14转向系统设计规范

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

转向系统设计规范--甘晓珍1转向系统设计规范1规范本规范介绍了转向系统的设计计算、匹配、以及动力转向管路的布置。本规范适用于天龙系列车型转向系统的设计2.引用标准:本规范主要是在满足下列标准的规定(或强制)范围之内对转向系统设计和整车布置。GB17675-1999汽车转向系基本要求GB11557-1998防止汽车转向机构对驾驶员伤害的规定GB7258-1997机动车运行安全技术条件GB9744-1997载重汽车轮胎GB/T6327-1996载重汽车轮胎强度试验方法《汽车标准汇编》第五卷转向车轮3.概述:在设计转向系统时,应首先考虑满足零部件的系列化、通用化和零件设计转向系统设计规范--甘晓珍2的标准化。先从《产品开发项目设计定义书》上猎取新车型在设计转向系统所必须的信息。然后布置转向传动装置,动力转向器、垂臂、拉杆系统。再进行拉杆系统的上/下跳动校核、与轮胎的位置干涉校核,以及与悬架系统的位置干涉、运动干涉校核。最小转弯半径的估算,方向盘圈数的计算。最后进行动力转向器、动力转向泵,动力转向油罐的计算与匹配,以满足整车与法规的要求;确定了动力转向器、动力转向泵,动力转向油罐匹配之后,再完成转向管路的连接走向。4车辆类型:以EQ33868×4为例,6×4或4×2类似5杆系的布置:根据《产品开发项目设计定义书》上所要求的、车辆类型、车驾宽、高、轴距、空/满载整车重心高坐标、轮距、前/后桥满载轴荷、最小转弯直径、最高车速、发动机怠速、最高转速,空压机接口尺寸,轮胎规格等,确定前桥的吨位级别、轮胎气压、花纹等。考虑梯形机构与第一轴、第二轴、第三轴、第四轴之间的轴距匹配及各轴轮胎磨损必需均匀的原则,确定第一前桥、第二前桥内外轮转角、第一垂臂初始角、摆角与长度、中间垂臂的长度、初始角、摆角,确定上节臂的坐标、长度等确定的参数如下第一、二轴选择7吨级规格轮胎型号:12.00-20、轮胎气压0.74Mpa、花纹第一轴外轮转角35°;内轮转角44°转向系统设计规范--甘晓珍3第二轴外轮转角29°;内轮转角34°第一轴上节臂参数上节臂球销坐标上节臂有效长度垂臂参数垂臂长度315mm,中间球销长度187mm(接中间拉杆),初始角向后2°第二轴上节臂参数上节臂球销坐标上节臂有效长度中间垂臂参数中间垂臂长度330mm(接第二直拉杆),中间球销长度230mm(接中间拉杆),中间球销长度269.5mm(接助力油缸活塞),初始角向后6°上述主要参数确定后,便可布置转向机支架、第一直拉杆、第二直拉杆、中间拉杆。设计转向机支架时,第一要考虑支架的强度,第二要支架的刚度,第三要考虑支架的铸造工艺性。转向机支架可以用有限元进行优化设计,在因为支架的强度与刚度影响到整个转向系统的性能。支架的强度与刚度不足,会引起前轮摆振、前轮转向反映迟钝、方向盘自由间隙大。另外,还要考虑转向机的安装工艺性与维修方便性,使转向机的安装螺栓有拧紧空间及便于拆卸。设计第一/第二直拉杆时,要考虑下列问题:保证车轮右转极限位置时,直拉杆与轮胎有10mm的间隙,直拉杆与减振器有10mm的间隙,直拉杆前后球销摆角不超过12°,直拉杆与制动气室有10mm的间隙等;保证车轮左转极限位置时,直拉杆不转向系统设计规范--甘晓珍4与转向机及转向机支架等另部件干涉,直拉杆前后球销摆角也不超过12°。还保证车轮上下跳动100mm时,直拉杆前后球销摆角不超过15°。当然,还要考虑直拉杆的制造工艺性,使设计的直拉杆容易制造。最后还要对直拉杆进行强度、稳定性校核。设计中间拉杆时,要考虑下列问题:保证车轮左/右转至极限位置时,中间拉杆不与周围的另部件干涉,中间拉杆前后球销摆角不超过12°。该车型为双前桥,杆系另部件多,而且运动关系较复杂,如果制造水平低,杆系长度公差较大的话,则会引起第一与第二桥不对中,因此,应把中间拉杆设计成长度可调式,以弥补制造缺陷带来的不足。当然,也考虑中间拉杆的制造工艺性,使设计的中间拉杆容易制造。最后同样要对中间拉杆进行强度、稳定性校核。6前轮上跳干涉量计算布置拉杆系统时,要保证前悬架和转向拉杆的运动协调。在采用钢板弹簧的情况下,当前轮相对于车身上下跳动时,转向上节臂与直拉杆相连的球销中心,一方面随着前桥沿着弹簧主片所决定的轨迹运动,同时又要随着垂臂球销中心运动。如果这两种运动的轨迹偏差较大,一方面在不平路面时会引起前轮摆振,一方面,在紧急制动时由于弹簧的纵向扭曲,会引起前轮跑偏。按TRW规定:当车轮上跳100时,干涉量不大于7mm,车轮下跳100mm时,干涉量不大于15mm。如果不考虑两前桥之间的相互影响,双前桥的干涉量计算与单前桥的计算方法相同,单独计算每个前桥的干涉量便可。计算结果如下转向系统设计规范--甘晓珍5弹簧当量杆半径R=612mm弹簧当量杆角度θ=7.86°第一轴:当前轮上跳(DZ)100mm或下跳(DZ)100mm,相应的干涉量(DX)如下:DZDX100-5.5490-4.6680-3.86-80-0.9-90-1.36-100-1.92第二轴:当前轮上跳(DZ)100mm或下跳(DZ)100mm,相应的干涉量(DX)如下:DZDX1002.12902.23802.27-80-7.04-90-8.29-100-9.63转向系统设计规范--甘晓珍6可以看出,杆系的布置满足TRW要求。7转弯半径估算转弯半径与第一轴的梯形机构及梯形机构与杆系的匹配有关。要尽量使所有轮胎产生纯滚动和最小的磨损。因为轮胎有侧偏现象,目前,轮胎侧偏刚度等有关参数欠缺,转弯半径只能作近似估算,然后用实验验证。第一轴梯形机构的计算梯形臂球头坐标(-170,882.1,-110.0)梯形臂有效长度m=175mm梯形底角76.27°梯形臂两球头中心距1764.2mm通过计算机优化设计,当内轮转44°时外轮相应转35°最小转弯半径Rmin可按下式计算:式中:L1,L2,L3轴距a车轮接地偏置距max0外轮最大转角a1第一轴侧偏角,取4代入数据:aLLLLRa)sin(35.01max03321min转向系统设计规范--甘晓珍7最小转弯直径为21.66m,满足整车要求,实际转弯半径通过试验测定。8方向盘圈数计算:方向盘圈数与第一前桥最大转角及转向系的角传动比有关,它影响驾驶员的超纵轻便性和转向灵敏性。方向盘圈数小时,机动性好些,如果太小,会不符合驾驶员的驾驶习惯;方向盘圈数大时,转向不太灵敏。对装动力转向的重型货车,方向盘圈数可稍小些,一般在4.0--5.5圈之间。通过计算机优化设计,结果为:当第一轴左轮向右转35°时,垂臂摆角向后39.4°,右轮相应的转角为44°;中间垂臂摆角向后31°,第二轴左轮向右相应的转27.7°,右轮相应的转角为32.4°;当左轮向左转44°时,垂臂摆角向前38.4°,右轮相应的转角为35°;中间垂臂摆角向前摆32°,第二轴左轮向左转33°,右轮的转角为28.3°。当动力转向器角传动比为24时,方向盘转动总圈数计算如下方向盘转动总圈数:(圈)mmmR828.10108282.37)435sin(5.6127min2.536024)4.384.39(转向系统设计规范--甘晓珍89动力转向系统的计算9.1第一轴动力转向能力计算动力转向器的缸径、最高油压、最大输出力矩与轮胎的原地转向阻力矩,拉杆系统的角传动比有关。动力转向器的最大输出力矩过大时,易使杆系和车身变形;动力转向器的最大输出力矩过小,车辆超载时,动力转向失灵。原则是保证动力转向器的最大输出力矩稍大于作用于直拉杆作用于摇臂轴上的阻力矩。原地转向力估算。原地转向时,轮胎阻力矩Ms一般按V.E.GOUGH推荐的经验公式计算,即式中:μ轮胎与地面间的摩擦系数,取μ=0.7G单边车轮负荷NG=7000x9.8/2=34300NP轮胎充气压力,取7.4X105代入数据得:拉杆机构传动比计算。通过计算机优化设计:左轮右转35°时,拉杆机构(从垂臂到上节臂)传动比iD为1.411,梯形机构(从上节臂到右梯形臂)传动PGMS33mNMS.1.1723104.73430037.053转向系统设计规范--甘晓珍9比iT为0.559;左轮向左转44°时,拉杆机构传动比iD=0.668,梯形机构传动比iT=1.855摇臂轴上阻力矩MP的计算。当轮胎阻力矩为MS时,相应的作用在摇臂轴上的阻力矩MP:如果考虑系统摩擦则式中:ηT梯形机构效率,取0.8ηD拉杆机构效率,取0.8代入数据得左轮向左转时:N.m左轮向右转时:Nm动力转向器的计算如果动力转向器的缸径选择120mm,螺杆直径为13.677mm,在压力为13.0Mpa时,摇臂轴上确保输出扭矩M=6149N.mSDTPMII11MSDDTTPMII11M1.53971.17238.0668.08.0855.111PM9.49391.17238.0411.18.0559.011PM转向系统设计规范--甘晓珍10显然,动力转向器输出扭矩稍大于摇臂轴上的阻力矩,动力转向器能满足超载使用要求。9.2第二轴动力转向能力计算双前桥中的第二桥的动力转向助力一般由随动助力缸或者随动助力转向器提供。随动助力缸实际上就是一个动力缸,主要尺寸是动力缸内径和活塞行程。随动助力缸油压由动力转向器提供,活塞移动行程与方向由中间拉杆控制。随动助力缸提供的是油缸伸张输出力与油缸压缩输出力。根据第二桥的负荷与转角选择动力缸内径与活塞伸张/压缩行程。随动助力转向器与随动助力缸稍有不同,随动助力转向器提供的是摇臂轴的输出力矩,随动助力转向器是集转向器与动力缸于一体。相同的是随动助力转向器的油压也由动力转向器提供,摇臂轴的摆角与方向也由中间拉杆控制。采用随动助力缸的优点是因为随动助力缸结构简单,外形尺寸较小,因而拉杆系统布置较灵活,比较适合改装车改装用。缺点是杆系结构稍微复杂一些。采用随动助力转向器的优点是杆系结构简单一些。缺点是因为随动助力转向器的外形尺寸较大,占用的空间较大,随动助力转向器一般布置在车架上平面,不太适合改装车改装用。第二轴动力转向能力计算,与第一轴动力转向能力计算类似。同样,随动助力缸的缸径、最高油压、最大输出力的选择,也要考虑轮胎的原地转向阻力矩,拉杆系统的角传动比。随动助力缸的油压由动力转向器提供,最高油压与动力转向器相同。随动助力缸输出的力过大时,也会使使杆系和车身变形;随动助力缸输出的力过小,车辆超载时,动力转向也失灵。原则是保证随动助力转向系统设计规范--甘晓珍11缸输出的力稍大于第二直拉杆作用于中间垂臂力。原地转向力估算与第一轴相同,因为第二桥的轴荷与第一桥相同,因而轮胎阻力矩Ms也为1723.1Nm.第二轴拉杆机构传动比计算。通过计算机优化设计:第二轴左轮右转28.5°时,拉杆机构(从垂臂到上节臂)传动比iD为1.231,梯形机构(从上节臂到右梯形臂)传动比iT为0.694。左轮向左转34.4°时,拉杆机构传动比iD=0.835,梯形机构传动比iT=1.495轮胎阻力矩作用到中间垂臂轴上的力矩MP2的计算。当轮胎阻力矩为MS时,中间摇臂轴上的阻力矩MP2:如果考虑系统摩擦则式中:ηT梯形机构效率,取0.8ηD拉杆机构效率,取0.8代入数据得SDTPMIIM112sDDTTPMIIM112转向系统设计规范--甘晓珍12左轮向左转时:N.m左轮向右转时:N.m转向助力油缸作用于中间垂臂的力矩计算:转向助力油缸工作缸径φ50;连杆直径φ25,接油缸的中间垂臂有效长度H1=0.2569m。在效率η=90%,油压为P=13MPa时,油缸伸张输出力油缸伸张输出力矩:Ms=Fs*H1=22972.5x0.2569=5901.6Nm在效率η=90%,油压为P=13MPa时,油缸压缩输出力油缸压缩输出力矩:My=Fy*H1=17230x0.2569=4426.3Nm动力转向器提供给中间垂臂富余力矩的计算。因为中间拉杆连接第一垂臂与中间垂臂,如果动力转向器的输出力矩大于第一前桥的阻力矩时,动力转向

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功