2015年广东省高考数学试卷(理科)答案与解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12015年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4}B.{﹣1,﹣4}C.{0}D.∅2.(5分)(2015•广东)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3iB.2+3iC.3+2iD.3﹣2i3.(5分)(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+D.y=x+ex4.(5分)(2015•广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.15.(5分)(2015•广东)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0D.2x﹣y+=0或2x﹣y﹣=06.(5分)(2015•广东)若变量x,y满足约束条件,则z=3x+2y的最小值为()A.4B.C.6D.7.(5分)(2015•广东)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=18.(5分)(2015•广东)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3B.至多等于4C.等于5D.大于5二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)(2015•广东)在(﹣1)4的展开式中,x的系数为.10.(5分)(2015•广东)在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8=.211.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=.12.(5分)(2015•广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13.(5分)(2015•广东)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.14.(5分)(2015•广东)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A(2,),则点A到直线l的距离为.15.(2015•广东)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD=.三、解答题16.(12分)(2015•广东)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.17.(12分)(2015•广东)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄123456789404440413340454243101112131415161718363138394345393836192021222324252627274341373442374442282930313233343536343943384253374939(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)?318.(14分)(2015•广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.19.(14分)(2015•广东)设a>1,函数f(x)=(1+x2)ex﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤﹣1.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)(2015•广东)数列{an}满足:a1+2a2+…nan=4﹣,n∈N+.(1)求a3的值;(2)求数列{an}的前n项和Tn;(3)令b1=a1,bn=+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.答案:1、解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4},4N={x|(x﹣4)(x﹣1)=0}={1,4},则M∩N=∅.故选:D.2、解:复数z=i(3﹣2i)=2+3i,则=2﹣3i,故选:A.3、解:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2x+是偶函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函数,也不是偶函数,所以D正确.故选:D.4、解:这是一个古典概型,从15个球中任取2个球的取法有;∴基本事件总数为105;设“所取的2个球中恰有1个白球,1个红球”为事件A;则A包含的基本事件个数为=50;∴P(A)=.故选:B.5、解:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2x+y+5=0或2x+y﹣5=0故选:A.6、解:不等式组对应的平面区域如图:由z=3x+2y得y=﹣x+,平移直线y=﹣x+,则由图象可知当直线y=﹣x+,经过点A时直线y=﹣x+的截距最小,此时z最小,由,解得,即A(1,),此时z=3×1+2×=,故选:B.57、解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选:C.8、解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,且球的半径等于边长,即有球心与正四面体的底面吗的中心重合,故不成立;同理n>5,不成立.故选:B.9、解:二项式(﹣1)4的展开式的通项公式为Tr+1=•(﹣1)r•,令2﹣=1,求得r=2,∴二项式(﹣1)4的展开式中x的系数为=6,故答案为:6.10、解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.故答案为:10.11、解:∵sinB=,∴B=或B=当B=时,a=,C=,A=,由正弦定理可得,则b=1当B=时,C=,与三角形的内角和为π矛盾故答案为:112、解:某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班6共写了=40×39=1560条.故答案为:1560.13、解:随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,可得np=30,npq=20,q=,则p=,故答案为:.14、解:直线l的极坐标方程为2ρsin(θ﹣)=,对应的直角坐标方程为:y﹣x=1,点A的极坐标为A(2,),它的直角坐标为(2,﹣2).点A到直线l的距离为:=.故答案为:.15、解:连接OC,则OC⊥CD,∵AB是圆O的直径,∴BC⊥AC,∵OP∥BC,∴OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,∴4=OD,∴OD=8.故答案为:8.16、解:(1)若⊥,则•=(,﹣)•(sinx,cosx)=sinx﹣cosx=0,即sinx=cosxsinx=cosx,即tanx=1;(2)∵||=1,||=1,•=(,﹣)•(sinx,cosx)=sinx﹣cosx,∴若与的夹角为,则•=||•||cos=,即sinx﹣cosx=,7则sin(x﹣)=,∵x∈(0,).∴x﹣∈(﹣,).则x﹣=即x=+=.17、解:(1)由系统抽样知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,…,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.(3)∵s2=.∴s=∈(3,4),∴36名工人中年龄在﹣s和+s之间的人数等于区间[37,43]的人数,即40,40,41,…,39,共23人.∴36名工人中年龄在﹣s和+s之间所占百分比为≈63.89%.18、(1)证明:在△POC中PO=PC且E为CD中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PCD,∴PE⊥平面ABCD,又∵FG⊂平面ABCD,∴PE⊥FG;(2)解:由(1)知PE⊥平面ABCD,∴PE⊥AD,又∵CD⊥AD且PE∩CD=E,∴AD⊥平面PDC,又∵PD⊂平面PDC,∴AD⊥PD,又∵AD⊥CD,∴∠PDC为二面角P﹣AD﹣C的平面角,在Rt△PDE中,由勾股定理可得:PE===,∴tan∠PDC==;(3)解:连结AC,则AC==3,在Rt△ADP中,AP===5,8∵AF=2FB,CG=2GB,∴FG∥AC,∴直线PA与直线FG所成角即为直线PA与直线FG所成角∠PAC,在△PAC中,由余弦定理得cos∠PAC===.19、解:(1)f'(x)=ex(x2+2x+1)=ex(x+1)2…2分∴f′(x)≥0,∴f(x)=(1+x2)ex﹣a在(﹣∞,+∞)上为增函数.…3分(2)证明:由(1)问可知函数在(﹣∞,+∞)上为增函数.又f(0)=1﹣a,∵a>1.∴1﹣a<0…5分∴f(0)<0.当x→+∞时,f(x)>0成立.∴f(x)在(﹣∞,+∞)上有且只有一个零点…7分(3)证明:f'(x)=ex(x+1)2,设点P(x0,y0)则)f'(x)=ex0(x0+1)2,∵y=f(x)在点P处的切线与x轴平行,∴f'(x0)=0,即:ex0(x0+1)2=0,∴x0=﹣1…9分将x0=﹣1代入y=f(x)得y0=.∴,∴…10分令;g(m)=em﹣(m+1)g(m)=em﹣(m+1),则g'(m)=em﹣1,由g'(m)=0得m=0.当m∈(0,+∞)时,g'(m)>0当m∈(﹣∞,0)时,g'(m)<0∴g(m)的最小值为g(0)=0…12分∴g(m)=em﹣(m+1)≥0∴em≥m+1∴em(m+1)2≥(m+1)3即:∴m≤…14分20、解:(1)∵圆C1:x2+y2﹣6x+5=0,921、解:(1)∵a1+2a2+…nan=4﹣,n∈N+.∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2=,∵a1+2a2+…+nan=4﹣,n∈N+.∴a1+2a2+…+(n﹣1)an﹣1=4﹣,n∈N+.整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功