第三十六周二进制专题简析:二进制就是只用0和1两数字,在计数与计算时必须“满二进一”,即每两个相同的单位组成一个和它相邻的最高的单位。二进制的最大特点是:每个数的各个数位上只有0或只有1两种状态。二进制与十进制之间可以互相转化。1,将一个二进制数写成十进制数的步骤是:(1)将二进制数的各数位上数字改写成相应的十进制数;(2)将各数位上对应的十进制数求和,所得结果就是相应的十进制数。将十进制数改写成二进制数的过程,正好相反。2,十进制数改写成二进制数的常用方法是:除以二倒取余数。3,二进制数的计算法则:(1)加法法则:0+0=00+1=11+0=11+1=10(2)乘法法则:0×0=00×1=01×0=01×1=1例1:把二进制数110(2)改写成十进制数。分析与解答:十进制有两个特点:(1)它有十个不同的数字符号;(2)满十进1。二进制有两个特点:(1)它的数值部分,只需用两个数码0和1来表示;(2)它是“满二进一”。把二进制数110(2)改写成十进制数,只要把它写成2的幂之和的形式,然后按通常的方法进行计算即可。110(2)=1×22+1×21+0×20=1×4+1×2+0×1=4+2+0=6练习一:把下列二进制数分别改写成十进制数。(1)100(2)(2)1001(2)(3)1110(2)例2:把十进制数38改写成二进制数。分析与解答:把十进制数改写成二进制数,可以根据二进制数“满二进一”的原则,用2连续去除这个十进制数,直到商为零为止,把每次所得的余数按相反的顺序写出来,就是所化成的二进制数,这种方法叫做“除以二倒取余数”。238……0219……129……124……022……01……1即:38(10)=100110(2)练习二把下列十进制数分别改写成二进制数。(1)12(10)(2)15(10)(3)78(10)例3:计算1011(2)+11(2)分析与解答:任何进位制数的运算,都可以根据十进制数的运算法则来进行,做一位数的运算需要有加法表(即加法口诀)。二进制的加法口诀只有一句:1(2)+1(2)=10(2)1011(2)+11(2)=1110(2)1011(2)+11(2)1110(2)你能用十进制计算来检验上面的计算吗?练习三1,计算101(2)+10(2)2,计算1110(2)+11(2)3,计算11010(2)-1111(2)例4:计算1101(2)×11(2)分析与解答:二进制的乘法口诀只有一句:1(2)×1(2)=1(21101(2)×11(2)1101(2)1101(2)100111(2)你能用十进制计算来检验上面的计算吗?练习四1,计算110(2)×10(2)2,计算1011(2)×11(2)3,计算101(2)×110(2)例5:计算1111(2)÷101(2)分析与解答:二进制数的除法运算与十进制的除法运算一样,是乘法的逆运算。11(2)101(2)1111(2)1011011010练习五1,计算11100(2)÷100(2)2,计算10010(2)÷11(2)3,计算10000111(2)÷11(2)第三十七周应用题(三)专题简析:这一周,我们来学习一些较复杂的典型问题,如平均数问题、和倍问题、差倍问题等。这些问题的数量关系比较隐蔽,往往需要通过适当的转化,使数量关系明朗化,从而找到解题思路。例1:甲、乙、丙三个公司到汽车制造厂订购了18辆汽车,按合同三个公司平均分配,付款时丙没有带钱,甲公司付出10的钱,乙公司付出8辆的钱,丙公司应付款90万元。甲、乙两公司应收回多少万元?分析与解答:根据题意,把18辆汽车平均分给三个公司,每个公司应得18÷3=6辆。丙公司6辆汽车付款90万元,每辆汽车应是90÷6=15万元。因为甲公司多付出10-6=4辆的钱,所以,甲公司应收回15×4=60万元;乙公司多付8-6=2辆的钱,应收回15×2=30万元。练习一1,甲、乙、丙三人一起买了12个面包平分着吃,甲拿出7个面包的钱,乙付了5个面包的钱,丙没有带钱。等吃完后一算,丙应该拿出4元钱。甲应收回多少钱?2,王叔叔和李叔叔去江边钓钱,王叔叔钓了7条鱼,李叔叔钓了11条鱼。中午来了位游客,王叔叔和李叔叔把钓得的鱼烧熟后平均分成3份。餐后,游客付了6元钱给王叔叔和李叔叔两人。问:王叔叔和李叔叔各应得多少元?3,小华、小明和小强三人合用一些练习本,小华带来8本,小明带来7本,小强没有练习本,他付出了10元。小华应得几元钱?例2:两个数的和是94,有人计算时将其中一个加数个位上的0漏掉了,结果算出的和是31。求这两个数。分析与解答:根据题意,正确算式中的一个加数是错误算式中的一个加数的10倍,即比它多9倍。而两个结果相差94-31=63,因此,误加上的数是63÷9=7,应该加的数是7×10=70,另一个加数为94-70=24,所以,这两个数分别是24和70。练习二1,楠楠和锋锋同算两数之和,楠楠得982,计算正确;锋锋得577,计算错误。锋锋算错的原因是将其中一个加数个位的0漏掉了。两个加数各是多少?2,小龙和小虎同算两数之和。小龙得2467,计算正确;小虎得388,计算错误。小虎算错的原因是将其中一个加数十位和个位上的两个0漏掉了。两个加数各是多少?3,小梅把6×(□+8)错看成6×□+8,她得到的结果与正确的答案相差多少?例3:学校三个兴趣小组共有学生180人,数学兴趣小组的人数比科技兴趣小组和美术兴趣小组人数的总和还多12人,科技兴趣小组的人数比美术兴趣小组多4人。三个兴趣小组各有多少人?分析与解答:根据前两个已知条件,可求数学兴趣小组有(180+12)÷2=96人,科技兴趣小组和美术兴趣小组的人数的和是180-96=84人;又由“科技兴趣小组和美术兴趣小组的人数的和是84人”和“科技兴趣小组的人数比美术兴趣小组多4人”,可求科技兴趣小组有(84+4)÷2=44人,美术兴趣小组有84-44=40人。练习三1,三只船运木板9800块,第一只船比其余两只船共运的少1800块,第二只船比第三只船多运200块。三只船各运木板多少块?2,红花、绿花和黄花共有78朵,红花和绿花的总朵数比黄花多6朵,红花比绿花少6朵。三种花各有多少朵?3,甲、乙、丙三个数的和是120,其中甲、乙两个数的和是丙的3倍,甲比乙多10。三个数各是多少?例4:有甲、乙、丙三袋化肥,甲、乙两袋共重32千克,乙、丙两袋共重30千克,甲、丙两袋共重22千克。甲、乙、丙三袋各重多少千克?分析与解答:根据“甲、乙两袋共重32千克”与“乙、丙两袋共重30千克”,可知甲袋比丙袋重32-30=2千克,又已知“甲、丙两袋共重22千克”,于是,这道题目可以转化为和差问题来解。所以甲袋化肥重(22+2)÷2=12千克,丙袋化肥重22-12=10千克,乙袋化肥重32-12=20千克。练习四1,某工厂一车间和二车间共有100人,二车间和三车间共有97人,一车间和三车间共有93人。三个车间各有多少人?2,某校一年级有四个班,共有138人,其中一(1)班和一(2)班共有70名学生,一(1)班和一(3)班共有65名学生,一(2)班和一(3)班共有59名学生。一(4)有多少名学生?3,甲、乙、丙三个数,甲、乙两数的和比丙多59,乙、丙两数的和比甲多49,甲、丙两数的和比乙多85。甲、乙、丙三个数各是多少?例5:小龙有故事书的本数是小虎的6倍,如果两人再各买2本,那么小龙有故事书的本数是小虎的4倍。两人原来各有故事书多少本?分析与解答:如果小虎再买2本,小龙再买2×6=12本,那么现在小龙的本数仍是小虎的6倍,而现在小龙的本数是小虎的4倍,因此,2×6-2=10本就是小虎现有本数的6-2=4倍。所以,小虎现在有10÷2=5本,小虎原来有5-3=2本,小龙原来有3×6=18本。练习五1,城南小学有红皮球的只数是黄皮球的5倍,如果这两种皮球再各买4只,那么红皮球的只数是黄皮球的4倍。原来红皮球和黄皮球各有多少只?2,学校有彩色粉笔和白粉笔若干盒,白粉笔的盒数是彩色粉笔的3倍,后来,白粉笔和彩色粉笔各用去12盒,现在白粉笔的盒数是彩色粉笔的7倍。学校原来有彩色粉笔和白粉笔各多少盒?3,某小队队员提一篮苹果和梨子到敬老院去慰问,每次从篮里取出2个梨子、5个苹果送给老人,最后剩下11个苹果,梨子正好分完,这时他们才想起来原来苹果是梨子的3倍。敬老院有多少个老人?第三十八周应用题(四)专题简析:大家都希望自己成为一个“小高斯”。这一周,我们来学习一些需要较高解题技巧的应用题,它们的解题思路往往比较独特,并且容易做错。如:书本的页码问题,较复杂的植树问题,以及其他智巧问题。这些智巧问题正是训练你成为“小高斯”的好题目。例1:第七册数学课本共153页,编印这本书的页码共要用多少个数字?分析与解答:从1到153按数的位数分,可以分为:一位数、两位数、三位数,它们分别由1个、2个、3个数字组成。从第1页到第9页,要用9个数字;从第10页到第99页,要用2×90=180个数字;从第100页到153页,要用3×54=162个数字,所以,一共要用9+180+162=351个数字。练习一1,一本故事书共131页,编印这本故事书的页码共要用多少个数字?2,一本辞典共1008页,编印这本辞典的页码共要用多少个数字?3,一本小说共320页,数字0在页码中共出现了多少次?例2:排一本辞典的页码共用了2886个数字,这本辞典共有多少页?分析与解答:排这本辞典的第1页到第9页的页码,要用9个数字;排第10页到99页的页码,要用2×90=180个数字;这样,剩下的页码要用2886-9-180=2697个数字。2697÷3=899页,即页码是三位数的排了899页。这样,这本辞典共有9+90+899=998页。练习二1,排一本科幻小说的页码共用了270个数字,这本科幻小说共有多少页?2,排一本学生词典的页码,共用了3829个数字。这本词典共有多少页?3,一本故事书的页码,用了39个0,这本书共有多少页?例3:两棵杨树相距75米,在中间又等距离地栽了14棵白玉兰树。第9棵与第1棵之间相距多少米?分析与解答:根据题意,两棵杨树之间又增加了14棵白玉兰树,可知75米内共栽树14+2=16棵,共有16-1=15段,每段长75÷15=5米。而第1棵到第9棵之间有9-1=8段,所以,第9棵到第1棵之间相距5×8=40棵。练习三1,两棵树相隔45米,在中间以相等距离增加8棵树后,第8棵与第1棵相隔多少米?2,两棵树相隔92米,在中间以相等距离增加22棵后,第10棵与第1棵间相隔多少米?3,两盆花相隔12米,在中间以相等距离增加11盆花后,第9盆与第3盆花之间相隔多少米?例4:一个圆形花坛,绕着它走一圈是90米,如果沿着它的周围每隔6米栽一株丁香花,再在每相邻两株丁香花之间等距离地栽两株月季花。问丁香花和月季花各栽了多少株?分析与解答:在圆形花坛的周围栽花,栽丁香花的株数正好等于分成的段数,所以,丁香花栽了90÷6=15株。由于每相邻的两株丁香花之间等距离地栽两株月季花,所以月季花栽了2×15=30株。练习四1,一个圆形花坛的周长是60米,沿着它的周围每隔3米插一面红旗,每两面红旗中间插一面绿旗。红旗和绿旗各插了多少面?2,有一个圆形花圃,周长是120米,每隔6米栽一棵黄杨树,每两棵黄杨树之间等距离地栽3棵月季花。花圃周围栽了多少棵黄杨树?栽了多少棵月季花?3,有一条公路长450米,在两旁栽树,两端各栽一棵,每隔18米栽一棵柳树,每两棵柳树之间以相等的距离栽了3棵槐树。柳树、槐树各栽了多少棵?例5:有80个零件,分装成8袋,每袋装10个。在其中的7袋里面装的零件每个都是50克,有一袋里面的每个零件都是49克。这8袋混在一起,你能用秤称一次,就把装49克重的零件的那一袋找出来吗?分析与解答:将8袋零件依次编上序号:1、2、3、4、5、6、7、8。从第1袋中取出1个零件,从第2袋中取出2个零件,…,从第8袋中取出8个零件,共取出1+2+3+…+8=36个零件,总重量应少于50×36=1800克。将这些零件放在秤上称一下,总重量比1800