中考:角平分线、垂直平分线经典试题知识考点:了解角平分线、垂直平分线的有关性质和定理,并能解决一些实际问题。精典例题:【例题】如图,已知在△ABC中,AB=AC,∠B=300,AB的垂直平分线EF交AB于点E,交BC于点F,求证:CF=2BF。分析一:要证明CF=2BF,由于BF与CF没有直接联系,联想题设中EF是中垂线,根据其性质可连结AF,则BF=AF。问题转化为证CF=2AF,又∠B=∠C=300,这就等价于要证∠CAF=900,则根据含300角的直角三角形的性质可得CF=2AF=2BF。分析二:要证明CF=2BF,联想∠B=300,EF是AB的中垂线,可过点A作AG∥EF交FC于G后,得到含300角的Rt△ABG,且EF是Rt△ABG的中位线,因此BG=2BF=2AG,再设法证明AG=GC,即有BF=FG=GC。例题图1FECBA例题图2GFECBA分析三:由等腰三角形联想到“三线合一”的性质,作AD⊥BC于D,则BD=CD,考虑到∠B=300,不妨设EF=1,再用勾股定理计算便可得证。以上三种分析的证明略。例题图3DFECBA问题图321EDCBA探索与创新:【问题】请阅读下面材料,并回答所提出的问题:三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。如图,△ABC中,AD是角平分线。求证:ACABDCBD。分析:要证ACABDCBD,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在三角形相似,现在B、D、C在同一条直线上,△ABD与△ADC不相似,需要考虑用别的方法换比。我们注意到在比例式ACABDCBD中,AC恰好是BD、DC、AB的第四比例项,所以考虑过C作CE∥AD交BA的延长线于E,从而得到BD、CD、AB的第四比例项AE,这样,证明ACABDCBD就可以转化为证AE=AC。证明:过C作CE∥AD交BA的延长线于ECE∥ADE13221∠E=∠3AE=ACCE∥ADAEABDCBD∴ACABDCBD(1)上述证明过程中,用了哪些定理(写出两个定理即可);(2)在上述分析、证明过程中,主要用到了三种数学思想的哪一种?选出一个填入后面的括号内()①数形结合思想②转化思想③分类讨论思想答案:②转化思想(3)用三角形内角平分线性质定理解答问题:已知AD是△ABC中∠BAC的角平分线,AB=5cm,AC=4cm,BC=7cm,求BD的长。答案:935cm评注:本题的目的主要在于考查学生的阅读理解能力。跟踪训练:一、填空题:1、如图,∠A=520,O是AB、AC的垂直平分线的交点,那么∠OCB=。2、如图,已知AB=AC,∠A=440,AB的垂直平分线MN交AC于点D,则∠DBC=。第1题图OCBA第2题图NMDCBA第3题图EDCBA第4题图EABCD3、如图,在△ABC中,∠C=900,∠B=150,AB的中垂线DE交BC于D点,E为垂足,若BD=8,则AC=。4、如图,在△ABC中,AB=AC,DE是AB的垂直平分线,△BCE的周长为24,BC=10,则AB=。5、如图,EG、FG分别是∠MEF和∠NFE的角平分线,交点是G,BP、CP分别是∠MBC和∠NCB的角平分线,交点是P,F、C在AN上,B、E在AM上,若∠G=680,那么∠P=。填空第5题图GPMEBNCFA选择第1题图FEDCBA选择第2题图4321DCBA二、选择题:1、如图,△ABC的角平分线CD、BE相交于点F,且∠A=600,则∠BFC等于()A、800B、1000C、1200D、14002、如图,△ABC中,∠1=∠2,∠3=∠4,若∠D=360,则∠C的度数为()A、820B、720C、620D、5203、某三角形有一个外角平分线平行于三角形的一边,而这三角形另一边上的中线分周长为2∶3两部分,若这个三角形的周长为30cm,则此三角形三边长分别是()A、8cm、8cm、14cmB、12cm、12cm、6cmC、8cm、8cm、14cm或12cm、12cm、6cmD、以上答案都不对4、如图,Rt△ABC中,∠C=900,CD是AB边上的高,CE是中线,CF是∠ACB的平分线,图中相等的锐角为一组,则共有()A、0组B、2组C、3组D、4组5、如果三角形两边的垂直平分线的交点在第三边上,那么这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、不能确定三、解答题:1、如图,Rt△ABC的∠A的平分线与过斜边中点M的垂线交于点D,求证:MA=MD。第1题图MDCBA第2题图EFDCBA第3题图EFDCBA2、在△ABC中,AB≠AC,D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC,求证:AE平分∠BAC。3、如图,在△ABC中,∠B=22.50,∠C=600,AB的垂直平分线交BC于点D,BD=26,AE⊥BC于点E,求EC的长。4、如图,在Rt△ABC中,∠ACB=900,AC=BC,D为BC的中点,CE⊥AD,垂足为E,BF∥AC交CE的延长线于点F,求证AB垂直平分DF。第4题图EFDCBA选择第4题图EFDCBA