中国火力发电厂节能降耗措施汇总一、火力发电厂整体节能评价1.火力发电厂节能评价体系中的54个指标煤耗及相关指标42个水耗及相关指标6个材料消耗指标3个能源计量指标3个2.按相互影响的层面划分,火力发电厂节能评价指标构成如下图所示:二、先进的节能技术应用通过对火力发电厂节能评价结果,可针对影响机组能耗较大的系统或设备进行节能技术改造,能够使机组更加经济运行。1.火力发电厂燃煤锅炉畅通节能技术由于锅炉所燃烧的燃料中含有越来越多的炉渣,因此SO3含量是始终变化的。水冷壁、过热器后屏、再热器后屏及后端表面上的炉渣含量加大,因此导致SO3的生成量增加,导致受热面换热效率降低。畅通节能法™工艺被设计为一个炉渣和结垢控制计划,它特别针对锅炉的辐射和对流区域。由于该技术针对锅炉的问题区域,而不是简单地将化学物质运用于燃料,因此采用该技术所达到的效果和成本效益都超过了相对不够完善的方法。化学处理剂与空气和水混和,然后被喷射到烟气之中。“标靶性”区域是依据计算流体动力学(CFD)确定的,由此在已知存在问题区域的情况下确保达到最大的覆盖率。化学制品被添加到烟气中,并针对传热问题区域或者对形成SO3的化学反应有利的区域。这样即可保证:被喷射的物质能够到达问题区域,并得到有效的利用。然后,添加剂在炉渣形成的时候与炉渣发生反应,并能够渗透已有的沉积物,从而影响它们的晶体物理特性。通过采用这种方法,飞灰更易碎,而且更容易从表面清除。将这些结果融合在一起即可提高锅炉的效率。因此,除了提供解决排放问题的解决方案之外,该方法还能够实现相当可观的经济效益。畅通节能法™技术改进了设备性能,并通过增强燃料的灵活性得到额外的节约,投资回报率一般在4比1以上(ROI)。2.飞灰含碳量在线监测—节能优化锅炉飞灰含碳量在线监测装置是为电站锅炉烟气飞灰含碳量实时连续监测而设计的专用设备。它由飞灰含碳量现场检测站和系统主控单元(上位操作站)两部分组成,之间通过现场总线连接。现场站利用安装于锅炉尾部烟道内的灰样收集器适时收集待测灰样,再通过介质微波检测传感器将灰样的含碳量转换成与之相对应的电压信号,经微机处理单元运算,向系统传送飞灰含碳量数据,为锅炉运行提供燃烧调整以及热效率计算的依据。3.水冷壁性改(喷涂节能涂料)-优化传热传热是锅炉的根本目的。在电站锅炉中,传热的部件主要有:水冷壁、过热器、省煤器等,水冷壁是其中的主要换热部件。在保持其它传热部件正常工作的前提下,提高水冷壁换热量,将会增加锅炉系统出力,产生优化传热效果,达到节能降耗目的。锅炉水冷壁的换热量是由其几何形状及材料特性决定的。提高在用锅炉换热量最理想的方法是:不改变几何形状,不更换材料,仅提高其吸收辐射热的能力。该项技术就是有效提高水冷壁换热而研制的。针对电站锅炉工况,采用在炉膛温度区间具有极高黑度的多种材料,经纳米化加工而成。同时满足粘接牢固、耐冲刷、抗老化、减缓高温氧化、减轻积灰结焦等多种性能要求。该种节能材料还具有提高燃料解吸速度的特性,从而增强了燃烧,扩大了节煤效果。·节能原理—强化燃烧燃烧的本质是煤粉中的碳和氧接触发生氧化反应,以及挥发份析出并发生化学反应。强化燃烧就是要使这些反应更有效,煤粉燃尽更彻底,能量产生更充分。在电站燃煤锅炉中,挥发份的析出和化学反应已经非常迅速。如何有效提高碳和氧的化学反应速度,减少机械未完全燃烧损失,是强化煤粉燃烧,实现进一步节能的着眼点。·燃烧学对锅炉内碳和氧发生化学反应的过程分为五个步:(1)氧扩散到碳的表面(2)扩散的氧被碳的表面吸附(3)被吸附的氧与碳反应,生成碳氧化合物(CxOy)(4)碳氧化合物从碳表面解吸(5)碳氧化合物扩散离开,并与更多的氧接触再发生氧化反应,最终生成二氧化碳。研究发现,在高温下,碳氧化合物从碳表面解吸的速度太慢,制约了碳和氧的化学反应速度。如何有效加快这个过程,是强化燃烧技术的根本所在。本次介绍的节能材料具有提高解吸速度的特性,从而增强了燃烧,扩大了节煤的效果.电站燃煤锅炉热效率提升:0.5~1.5%。·应用实效:(1)有效提高了燃料的燃尽程度,减少了机械未完全燃烧损失.(2)显著增强了水冷壁的吸热效果,降低了排烟热损失。(3)有效阻止了高温腐蚀,减轻壁管的冲刷磨损。(4)减少了积灰和结焦,增强了传热效果。(5)提高锅炉效率,降低发电煤耗。·改造便捷:(1)不改动任何锅炉构件,仅对水冷壁进行材料喷涂。(2)不改变实际运行操作,只相应减少煤粉投入数量。4.磨煤机动态旋转分离器应用动态分离器上装有旋转叶片装置,叶片逆时针方向旋转,回转支撑带动转子旋转(图2)。转子包含用于颗粒分离的叶片和原煤落煤管。转子叶片由耐磨钢板制成。分离器的传动方式为通过变频率电机传动。·工作原理:静态分离器不能有效的将细的煤粉从粗煤粉中分离出来,会导致细煤粉在磨煤机里再次循环。含有细煤粉的研磨区域会降低研磨效率和磨机研磨能力(磨煤机出力)。动态分离器有效地减少了细煤粉在磨煤机内部的循环次数,大大提高了研磨效率和磨煤机能力。动态分离器利用空气动力学和离心力将细煤粉从粗煤粒中分离出来。动态分离器改善了煤粉细度,提高了燃料热效率,改善了锅炉燃烧状况。动态分离器的设计适用于研磨低挥发份煤或磨机的研磨能力下降时,使系统能够处于常规状态,完成出力调节或者改型为低NOX排出的燃烧器。5.风机、凝泵变频改造—减少厂用电率等发电厂厂用电量约占机组容量的5~l0%,泵与风机等辅机设备消耗的电能约占厂用电的70~80%。泵与风机的节电水平主要通过耗电率来反映。泵与风机的节能,重点要看其是否耗能过多、风机与管网是否匹配。目前火电厂中的主要用电设备能源浪费比较严重,主要是风机必须满功率运行,效率低、节流损失大、设备损坏快、输出功率无法随机组负荷变化进行调整、电机启动电流大(通常达到其额定电流的6—8倍)严重影响电机的绝缘性能和使用寿命。解决上述问题最有效手段之一就是利用变频技术对这些设备的驱动电源进行变频改造。6.冷水塔快速喷雾结冰防寒技术应用快速喷雾结冰防寒法是一种快速喷雾结冰防寒法,在水塔进风口铺设的围网上形成一层带有孔洞的薄冰膜,随着塔内的下水温度及环境温度变化,来改变冰膜孔洞的大小和融化速率,实现自动控制冷却塔进风口的进风量,按设定温度范围调整进风量,调整水塔区域内的气温,使冷却水在最佳温度下运行,避免冷却塔因寒冷产生结冰所造成的塔内配件严重破坏,使循环水温度随天气及负荷变化而变化,实现冬季循环水温度可控,满足水塔的防冻要求,保持机组在最佳的循环水温度下经济运行。冷水塔快速喷雾结冰防寒法”的应用,不仅有效解决冷却塔冻害问题,而且对机组冬季保持真空设计值、降低端差提供有效保证,大幅提高了机组的经济运行效率。北方地区属北温带季节性大陆气候,冬季昼夜温差大。冬季气温变化规律为昼高夜低,致使机组真空呈现昼低夜高的趋势,与机组负荷变化趋势-昼高夜低的方向相逆,不利于机组的经济运行。机组原设计采用的防冻措施,主要是人为悬挂挡风板,来控制进塔空气量防止水塔结冰,由于这种方法劳动强度及危险性大、无法实现循环水温度调节,不能满足由于天气温差变化及机组调峰对水塔的技术要求,特别是温度骤然上升时,对机组真空、端差影响较大,对机组经济和安全构成威胁。对此,利用“冷水塔快速喷雾结冰防寒法”新技术,在北方电厂循环水塔实施喷雾结冰防寒技术,成功解决此问题。·采用快速喷雾结冰防寒法冷却塔的特点采用快速喷雾结冰防寒法的冷却塔与采用常规悬挂挡风板防寒法的冷却塔相比,具有如下特点。(1)采用常规悬挂挡风板防寒法的冷却塔挡风板数量不能根据大气温度随时调整,只能进行季节性调整,不能满足天气温差变化及机组调峰对水塔运行的要求,且天气变化越快,昼夜温差越大,其缺点越明显。而采用快速喷雾结冰防寒法的冷却塔通过改变冰膜孔洞的大小和融化速率,实现自动控制冷却塔进风口的进风量,按设定温度范围调整进风量,调整水塔区域内的气温,使冷却水在最佳温度下运行,避免冷却塔因寒冷产生结冰所造成的塔内配件严重破坏,使循环水温度随天气及负荷变化而变化,实现冬季循环水温度可控,满足水塔的防冻要求,保持机组在最佳的循环水温度下经济运行。(2)采用常规悬挂挡风板防寒法的冷却塔受挡风板数量的限制,特别寒冷天气的深度防冻受到限制,满足不了深度防冻的要求。而采用快速喷雾结冰防寒法的冷却塔能够满足各种温度条件下的防冻要求。(3)而采用快速喷雾结冰防寒法的冷却塔能够试验循环水温度的自动控制,而采用常规悬挂挡风板防寒法的冷却塔则不能。(4)而采用常规悬挂挡风板防寒法的冷却塔劳动强度大,且每年需要大量维护费用,而采用快速喷雾结冰防寒法的冷却塔铺设的围网则可以一劳永逸,长时间运行,节省大量维护费用。(5)采用快速喷雾结冰防寒法的冷却塔与采用常规悬挂挡风板防寒法的冷却塔相比具有一定的运行经济性。·在辽宁东方发电有限公司应用实例冷水塔快速喷雾结冰防寒法,于2010年3月在辽宁东方发电有限公司#1机组进行试验,试验是由东北电力科学院进行。试验结果及结论如下:(1)辽宁东方发电有限责任公司地处辽宁省东部,深秋初冬和初春季节昼夜温差较大,且冷暖空气交替变化,使大气温度变化无常,气温经常在±8℃左右交替变化。采用人工悬挂挡风板方式来调整循环水温度实现难度较大,一是天气温度变化快,二是工作强度大且存在一定危险性,也不能达到机组循环水温度可控的要求。水塔通过悬挂挡风板调整防冻门能够满足水塔防冻要求,但对于气温高于0时,由于挡风板影响冷却塔进风,使冷却塔循环水温度升高。影响机组经济运行。(2)快速喷雾结冰防寒法是一种快速喷雾结冰防寒法,不仅可以通过改变冰膜孔洞的大小和融化速率,实现冷却塔冬季循环水温度可控,满足水塔的防冻要求,而且在昼夜空气温度变化较大时具有客观的经济性。(3)采用冷水塔快速喷雾结冰防寒法的冷却塔与采用常规悬挂挡风板防寒法的冷却塔相比,由于冷却塔效率变化影响汽轮机排汽压力可使机组煤耗降1.735g/kWh。每天发电量按6000MW,每年按运行60天计算,年可节约标煤约625t。(4)气温低于-5℃时,喷雾结冰防冻装置围网上的薄冰膜基本上处于不融化状态,可以有效地起到防冻的作用。当气温高于-5℃时,喷雾结冰防冻装置围网上的薄冰膜开始融化。(5)昼夜环境温度差越大经济效果越明显。(6)速喷雾结冰防寒法,对循环水温度可实现全自动控制。7.火力发电厂循环水系统节能装置在循环水回水管路上安装有温度传感器;在循环水给水管路上安装有传感器组;所有传感器的输出端均通过屏蔽电缆与信号采集装置相连接;信号采集装置通过RS485通讯与可编程控制器相连接;编程控制器分别与可视化操作装置、电力驱动控制器通讯连接;电力驱动控制器通过电力电缆与循环水泵相连接;电力驱动控制器还连接能耗计量装置。实现了实时连续的水量控制,控制进度高,能明显降低循环水泵的能耗,有利于提高发电机组的运行效率。8.冷却塔节能节水技术-高效雾化降温降低蒸发损耗装置常规冷却塔在设计时,为了减少水量损失,一般设有节水装置收水器。它是由一排或多排倾斜的板条或弧形叶板组成,布置在整个塔断面上,作用是阻拦热水与填料碰撞形成散溅的小水滴。小水滴夹杂在上升的湿热空气中,因突然改变方向,被截留下来。这种节水装置对湿热空气中的水蒸汽基本不起作用。冷却塔的设计是根据水的蒸发原理进行的,是以蒸发扩散带出热量为前提。蒸发损失是为完成水的冷却而必须蒸发的水量。因此,根据冷却塔理论,为达到一定的冷却效果,应尽可能增大蒸发量。目前普遍采用的常规湿冷系统的冷却塔在冷却循环水的同时通过蒸发向环境排出大量的水分,以300MW机组为例,每年通过冷却塔消耗的淡水量在500万吨左右。冷却塔节水技术冷却塔节水技术,是在冷却塔内用冷水作冷凝剂,使水蒸汽冷凝成水,从而减少冷却塔水蒸发损失,以实现冷却塔节水降低蒸发水损耗。在冷却塔风筒入口下方设冷凝喷射器,将低于湿热空气的冷凝剂均匀地喷淋成雾状细小水滴,喷淋面积与冷却塔内截面积相同,喷淋密度根据冷却塔的冷却水量而确定。喷射器喷出的冷凝剂不与冷却过程的热水接触,只与上升的湿热空气中水蒸汽密切接触进行冷凝过程。水蒸汽遇冷凝结成水