八上青岛版数学上第一章+全等三角形导学案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2班级姓名等级1A课题第1课时全等三角形课型新授课授课时间2014年月日课标要求观察、思考得出平移、翻折、旋转前后的图形全等的结论。这样处理一方面可以复习巩固全等三角形的概念,另一方面也使学生在某些情况下容易找到全等三角形的对应元素。学习目标1.理解全等三角形及相关概念,能够从图形中寻找全等三角形,探索并掌握全等三角形的性质,能够利用性质解决简单的问题.2.在探索全等三角形性质的过程中,体会研究问题的方法,感受图形变化途径.评价方案1.自主学习结果采用纸笔形式,由小组长负责评价。2.合作交流结果采用纸笔形式,各组互评。教学活动方案随记【创设情景】【问题】观察思考:每组的两个图形有什么特点?1.每组的两个图形形状大小都一样。2.每组的两个图形都可以重合。请列举出现实生活中能够完全重合的图形的例子?【确立目标】理解全等三角形及相关概念,能够从图形中寻找全等三角形,探索并掌握全等三角形的性质,能够利用性质解决简单的问题.【自主学习】如图,将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.加深学生对全等三角形概念的理解,以及动手操作能力的培养.组织学生观察、归纳,引导学生归纳全等三角形的性质教学活动方案随记ABBABCCCDDEDEF⑴⑵⑶2一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等.在图⑴中,点A与点D重合.点B与点E重合.我们把这样互相重合的一对顶点叫做对应顶点;AB边与DE边重合,这样互相重合的边就叫做对应边;∠A与∠D重合,它们就是对应角.△ABC与△DEF全等,我们把它记作:“△ABC≌△DEF”.读作“△ABC全等于△DEF”.注意:记两个三角形全等时,通常把对应顶点的字母写在对应的位置上.【问题】你能找出图⑴中其他的对应顶点、对应边和对应角吗?怎样表示图⑵⑶中的两个全等三角形,并找出对应顶点、对应边和对应角.点C与点F是对应点,BC边与EF边是对应边,CA边与FD边也是对应边.∠B与∠E是对应角,∠C与∠F也是对应角.【合作交流】【问题】图中的三角形为全等三解形。全等三角形的对应边有什么关系呢?对应角呢?全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.利用几何语言来描述其性质(板书)∵△ABC≌△DEF(已知)∴AB=DE,BC=EF,AC=DF(全等三角形的对应边相等)∴∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应角相等)∴AB=DE,BC=EF,AC=DF(全等三角形的对应边相等)∴∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应角相等)教学活动方案随记2班级姓名等级3【分组展示】【例1】如图,△ABC≌△AEC,∠B=30°,∠ACB=85°.求出△AEC各内角的度数.【例2】如图,已知△ABC≌△ADE,∠C=∠E,BC=DE,想一想:∠BAD=∠CAE吗?为什么?【例3】如图是一个等边三角形,你能利用折纸的方法把它分成两个全等的三角形吗?你能把它分成三个,四个全等的三角形吗?【释疑解惑】ABCDEECBA4通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.【巩固训练】P612练习册第一课时【拓展提升】1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.【作业布置】P71232班级姓名等级5课题第2课时三角形全等的判定(1)课型新授课授课时间2014年月日课标要求让学生自己动手画图实验,就会对相关结论印象深刻。将三角形的画法与三角形全等条件的探索相结合,也比单独讲三角形的画法效果好。学习目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.3.能运用“SAS”证明简单的三角形全等问题.评价方案1.自主学习结果采用纸笔形式,由小组长负责评价。2.合作交流结果采用纸笔形式,各组互评。教学活动方案随记【创设情景】【问题1】已知△ABC≌△DEF,找出其中相等的边与角.图中相等的边是:.相等的角是:.【问题2】你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.【确立目标】学生熟悉学习目标并提出自己的意见。【自主学习】活动1:画△ABC,∠B=60°,BC=7cm,AB=5cm,用剪刀剪下来,看一下同桌的两个同学的图形能否完全重合。引导学生去观察所画的边与角有什么特殊关系教学活动方案随记ACBDFE6由活动1:让学生去猜想并归纳出“SAS”定理。边角边判定定理:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)活动2:在△ABC与△A'B'C'中,若AB=A'B'AC=A'C'∠B=∠B',观察△ABC与△A'B'C'是否全等。(强化类比“SAS”)由学生观察总结出“边角边”不一定能判定两三角形全等。所以“SAS”定理一定是两边及两边的夹角对应相等才能判定两三个角全等。【合作交流】【例1】填空:(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).【例2】已知:如图5,AD∥BC,AD=CB.求证:△ADC≌△CBA.问题:如果把图5中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌△CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF=CE或AE=CF)?怎样证明呢?教学活动方案随记2班级姓名等级7【例3】已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.【分组展示】展示三个例题【释疑解惑】学生讨论,教师归纳可通过画图来回答这个问题,如图,图中ΔABD与ΔABC满足两边及其中一边的对角对应相等,但显然这两个三角形不全等。这说明有两边及其中一边的对角对应相等的两个三角形不一定全等。【巩固训练】互动第一课时【拓展提升】1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.【作业布置】P16复习与巩固1题2题8课型三角形全等的判定(2)课型新授课授课时间2014年月日相关标准陈述让学生自己动手画图实验,就会对相关结论印象深刻。将三角形的画法与三角形全等条件的探索相结合,也比单独讲三角形的画法效果好。学习目标1.三角形全等的条件:角边角、角角边.2.三角形全等条件小结.3.掌握三角形全等的“角边角”“角角边”条件.4.能运用全等三角形的条件,解决简单的推理证明问题.评价活动方案1.自主学习结果采用纸笔形式,由小组长负责评价。2.合作交流结果采用纸笔形式,各组互评。教学活动方案随记【创设情景】1.复习:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义;②SSS;③SAS.2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?【确立目标】学生熟悉学习目标并提出自己的意见。【自主学习】【问题1】三角形中已知两角一边有几种可能?1.两角和它们的夹边.2.两角和其中一角的对边.【问题2】三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).【问题3】我们刚才做的三角形是一个特殊三角形,随意画一个培养学生的逻辑推理能力、独立思考能力,会用“ASA或AAS“判断三角形全等,规范地书写证明过程.培养学生合情合理的逻辑推理能力,语言表达能力,规范地书写证明过程.培养学生的符号感,体会数学知识的严2班级姓名等级9三角形ABC,能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.②画线段A′B′,使A′B′=AB.③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.④射线A′D与B′E交于一点,记为C′即可得到△A′B′C′.将△A′B′C′与△ABC重叠,发现两三角形全等.【问题4】如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°∠A=∠D,∠B=∠E∴∠A+∠B=∠D+∠E∴∠C=∠F在△ABC和△DEF中BEBCEFCF∴△ABC≌△DEF(ASA).两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).【合作交流】【例1】如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.[分析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.证明:在△ADC和△AEB中AAACABCB所以△ADC≌△AEB(ASA)所以AD=AE.【释疑解惑】谨性.DCABFEDCABE10【例2】如图,海岸上有A、B两个观测点,点B在点A的正东方,海岛C在观测点A的正北方,海岛D在观测点B的正北方,从观测点A看C,D的视角∠CAD与从观测点B看海岛C,D的视角∠CBD相等,那么点A到海岛C的距离与点B到海岛D的距离相等,为什么?证明:∵∠CAD=∠CBD,∠1=∠2∴∠C=∠D。在△ABC与△BAD∠CAB=∠ABD(已知)∠C=∠D(已证)AB=BA(公共边)∴△ABC≌△BAD(AAS)∴AC=BD即点A到海岛C的距离与点B到海岛D的距离相等【分组展示】例1例2【巩固训练】练习册第二课时【作业布置】P113452班级姓名等级11课型三角形全等的判定(3)课型新授课授课时间2014年月日相关标准陈述通过观察和实验获得SSS,会运用SSS条件证明两个三角形全等.学习目标1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.。评价活动方案1.自主学习结果采用纸笔形式,由小组长负责评价。2.合作交流结果采用纸笔形式,各组互评。教学活动方案随记【创设情景】1.(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义__________________________________________________;②“SAS”公理__________________________________________________③“ASA”定理_______________________________

1 / 33
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功