起点教育授课:李老师1万有引力开普勒行星运动定律1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不同的星系中,此比值是不同的.(R3T2=k)一、对开普勒三定律的理解1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点.2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小.3.开普勒第三定律的表达式为a3T2=k,其中a是椭圆轨道的半长轴,T是行星绕太阳公转的周期,k是一个常量,与行星无关但与中心天体的质量有关.二、开普勒三定律的应用1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转.2.表达式a3T2=k中的常数k只与中心天体的质量有关.如研究行星绕太阳运动时,常数k只与太阳的质量有关,研究卫星绕地球运动时,常数k只与地球的质量有关.三、太阳与行星间的引力1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力2.万有引力的三个特性(1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力.(2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律.(3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.四、万有引力和重力的关系1.万有引力和重力的关系如图6-2、3-3所示,设地球的质量为M,半径为R,A处物体的质量为m,则物体受到地球的吸引力为F,方向指向地心O,由万有引力公式得F=GMmr2.引力F可分解为F1、F2两个分力,其中F1为物体随地球自转做圆周运动的向心力Fn,F2就是物体的重力mg2.近似关系:如果忽略地球的自转,则万有引力和重力的关系为:mg=GMmR2,g为地球表面的重力加速度.关系式2GMm/Rmg即2grGM3.随高度的变化:在高空中的物体所受到的万有引力可认为等于它在高空中所受的重力mg′=GMm(R+h)2,在地球表面时mg=GMmR2,所以在距地面h处的重力加速度g′=R2(R+h)2g.起点教育授课:李老师2五.计算天体的质量行星绕太阳,卫星绕行星做匀速圆周运动,为他们提供向心力的就是他们之间的万有引力,测量出环绕周期和环绕半径。公式:R22/T2mGMm/R)(即23/GTR4M观测行星的运动,计算太阳的质量;观测卫星的运动,计算行星的质量。六.天体质量和密度的计算(一).“天体自身求解”:若已知天体(如地球)的半径R和表面的重力加速度g,根据物体的重力近似等于天体对物体的引力,得mg=GMmR2,解得天体质量为M=gR2G,因g、R是天体自身的参量,故称“自力更生法”.(2)“借助外援法”:借助绕中心天体做圆周运动的行星或卫星计算中心天体的质量,常见的情况:GMmr2=m2πT2r⇒M=4π2r3GT2,已知绕行天体的r和T可以求M.(二).若天体的半径为R,则天体的密度ρ=M43πR3,将M=4π2r3GT2代入上式可得ρ=3πr3GT2R3.特殊情况,当卫星环绕天体表面运动时,其轨道半径r可认为等于天体半径R,则ρ=3πGT2.七.天体运动的分析与计算1.基本思路:一般行星或卫星的运动可看作匀速圆周运动,所需向心力由中心天体对它的万有引力提供.2.常用关系:(1)GMmr2=ma向=mv2r=mω2r=m4π2T2r(2)mg=GMmR2(物体在天体表面时受到的万有引力等于物体重力),整理可得:gR2=GM,该公式通常被称为黄金代换式.八.四个重要结论:设质量为m的天体绕另一质量为M的中心天体做半径为r的匀速圆周运动.(1)由GMmr2=mv2r得v=GMr,r越大,v越小.(2)由GMmr2=mω2r得ω=GMr3,r越大,ω越小.(3)由GMmr2=m2πT2r得T=2πr3GM,r越大,T越大.(4)由GMmr2=ma向得a向=GMr2,r越大,a向越小.以上结论可总结为“一定四定,越远越慢”.九.一、处理天体问题的基本思路及规律1.天体问题的两步求解法(1)建立一个模型:天体绕中心天体做匀速圆周运动,万有引力提供向心力,即:F万=F向.(2)写出两组式子:①GMmr2=mv2r=mω2r=m2πT2r=ma;②代换关系:天体表面GMmR2=mg,空间轨道上GMmr2=ma.起点教育授课:李老师3十.人造卫星的向心加速度、线速度、角速度、周期与半径的关系GMmr2=mamv2rmω2rm4π2T2r⇒a=GMr2(r越大,a越小)v=GMr(r越大,v越小)ω=GMr3(r越大,ω越小)T=4π2r3GM(r越大,T越大)⇒越高越慢十一.二、人造卫星的有关问题1.发射速度与环绕速度人造卫星的发射速度随着发射高度的增加而增大,最小的发射速度为v=GMR=gR=7.9km/s,即第一宇宙速度.由v=GMr可知,人造地球卫星的轨道半径越大,环绕速度越小,所以第一宇宙速度v=7.9km/s是最小的发射速度也是最大的环绕速度.2.两类运动——稳定运行和变轨运行卫星绕天体稳定运行时,GMmr2=mv2r.当卫星速度v突然变化时,F万和mv2r不再相等.当F万mv2r时,卫星做近心运动;当F万mv2r时,卫星做离心运动.3.两种特殊卫星:(1)近地卫星:卫星轨道半径约为地球半径,受到的万有引力近似为重力,故有GMmR2=mv2R=mg.(2)地球同步卫星:相对于地面静止,它的周期T=24h,所以它只能位于赤道正上方某一确定高度h,故地球上所有同步卫星的轨道均相同,但它们的质量可以不同.十二、双星系统问题两颗靠的很近的恒星称为双星,这两颗星必定以相同的角速度绕两者连线上的某一点转动才不至于由于万有引力的作用而吸引在一起.特点:①做圆周运动所需向心力相等(等于相互的万有引力);②角速度相等;③半径之和等于它们之间的距离,r1+r2=l.起点教育授课:李老师4您好,我是李老师,这是我课前对本次物理课的规划,以上是《万有引力》部分所有的知识点。望您在王粤回去后,监督他完成相应的作业以及复习功课,并签字。下次课让他把这个带回来,以便我可以第一时间掌握他的复习情况,谢谢。家长签字: