2019年辽宁省抚顺市中考数学试卷-(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019年辽宁省抚顺市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.3的相反数是()A.3B.C.﹣3D.﹣2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.4x•2x=8xB.2m+3m=5mC.x9÷x3=x3D.(﹣a3b2)2=﹣a6b44.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A.B.C.D.5.一组数据1,3,﹣2,3,4的中位数是()A.1B.﹣2C.D.36.下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查7.若一个等腰三角形的两边长分别为2,4,则第三边的长为()A.2B.3C.4D.2或48.一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是()A.15°B.25°C.45°D.60°9.如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,连接EM,MF,FN,NE,要使四边形EMFN为正方形,则需添加的条件是()A.AB=CD,AB⊥CDB.AB=CD,AD=BCC.AB=CD,AC⊥BDD.AB=CD,AD∥BC10.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=8cm,CH是AB边上的高,正方形DEFG的边DE在高CH上,F,G两点分别在AC,AH上.将正方形DEFG以每秒1cm的速度沿射线DB方向匀速运动,当点G与点B重合时停止运动.设运动时间为ts,正方形DEFG与△BHC重叠部分的面积为Scm2,则能反映S与t的函数关系的图象()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.据报道,某节日期间某市地铁二号线载客量达到17340000人次,再创历史新高.将数据17340000用科学记数法表示为.12.不等式组的解集是.13.若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是.14.如果把两条直角边长分别为5,10的直角三角形按相似比进行缩小,得到的直角三角形的面积是.15.一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是.16.如图,矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,若点A的坐标为(3,4),AB=2,AD∥x轴,则点C的坐标为.17.如图,在Rt△ABC中,∠ACB=90°,CA=CB=2,D是△ABC所在平面内一点,以A,B,C,D为顶点的四边形是平行四边形,则BD的长为.18.如图,直线l1的解析式是y=x,直线l2的解析式是y=x,点A1在l1上,A1的横坐标为,作A1B1⊥l1交l2于点B1,点B2在l2上,以B1A1,B1B2为邻边在直线l1,l2间作菱形A1B1B2C1,分别以点A1,B2为圆心,以A1B1为半径画弧得扇形B1A1C1和扇形B1B2C1,记扇形B1A1C1与扇形B1B2C1重叠部分的面积为S1;延长B2C1交l1于点A2,点B3在l2上,以B2A2,B2B3为邻边在l1,l2间作菱形A2B2B3C2,分别以点A2,B3为圆心,以A2B2为半径画弧得扇形B2A2C2和扇形B2B3C2,记扇形B2A2C2与扇形B2B3C2重叠部分的面积为S2………按照此规律继续作下去,则Sn=.(用含有正整数n的式子表示)三、解答题(本大题共2小题,共22分)19.(10分)先化简,再求值:÷(a﹣),其中a=2,b=2﹣.20.(12分)为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.学生选修课程统计表课程人数所占百分比声乐14b%舞蹈816%书法1632%摄影a24%合计m100%根据以上信息,解答下列问题:(1)m=,b=.(2)求出a的值并补全条形统计图.(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.四、解答题(本大题共2小题,共24分)21.(12分)为响应“绿色生活,美丽家园”号召,某社区计划种植甲、乙两种花卉来美化小区环境.若种植甲种花卉2m2,乙种花卉3m2,共需430元;种植甲种花卉1m2,乙种花卉2m2,共需260元.(1)求:该社区种植甲种花卉1m2和种植乙种花卉1m2各需多少元?(2)该社区准备种植两种花卉共75m2且费用不超过6300元,那么社区最多能种植乙种花卉多少平方米?22.(12分)如图,在△ABC中,∠ACB=90°,CA=CB,点O在△ABC的内部,⊙O经过B,C两点,交AB于点D,连接CO并延长交AB于点G,以GD,GC为邻边作▱GDEC.(1)判断DE与⊙O的位置关系,并说明理由.(2)若点B是的中点,⊙O的半径为2,求的长.五、解答题(本大题共1小题,共12分)23.(12分)如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)六、解答题(本大题共1小题,共12分)24.(12分)某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的60%.在销售过程中发现,这种儿童玩具每天的销售量y(件)与销售单价x(元)满足一次函数关系.当销售单价为35元时,每天的销售量为350件;当销售单价为40元时,每天的销售量为300件.(1)求y与x之间的函数关系式.(2)当销售单价为多少时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少?七、解答题(本大题共1小题,共12分)25.(12分)如图,点E,F分别在正方形ABCD的边CD,BC上,且DE=CF,点P在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90°得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为.(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD的边长为6,AB=3DE,QC=1,请直接写出线段BP的长.八、解答题(本大题共1小题,共14分)26.(14分)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式.(2)点N是y轴负半轴上的一点,且ON=,点Q在对称轴右侧的抛物线上运动,连接QO,QO与抛物线的对称轴交于点M,连接MN,当MN平分∠OMD时,求点Q的坐标.(3)直线BC交对称轴于点E,P是坐标平面内一点,请直接写出△PCE与△ACD全等时点P的坐标.2019年辽宁省抚顺市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【解答】解:3的相反数是﹣3,故选:C.2.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确;故选:D.3.【解答】解:∵4x•2x=8x2,故选项A错误;∵2m+3m=5m,故选项B正确;∵x9÷x3=x6,故选项C错误;∵(﹣a3b2)2=a6b4,故选项D错误;故选:B.4.【解答】解:从正面看去,一共三列,左边有1竖列,中间有1竖列,右边是2竖列.故选:A.5.【解答】解:将这组数据从小到大排列为﹣2、1、3、3、4,则这组数据的中位数为3,故选:D.6.【解答】解:A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选:B.7.【解答】解:①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边为4;②4是底边时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,综上所述,第三边为4.故选:C.8.【解答】解:根据题意,得:∠ACB=60°,∠DEF=45°.∵EF∥BC,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF﹣∠DEF=60°﹣45°=15°.故选:A.9.【解答】解:∵点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,∴EN、NF、FM、ME分别是△ABD、△BCD、△ABC、△ACD的中位线,∴EN∥AB∥FM,ME∥CD∥NF,EN=AB=FM,ME=CD=NF,∴四边形EMFN为平行四边形,当AB=CD时,EN=FM=ME=NF,∴平行四边形ABCD是菱形;当AB⊥CD时,EN⊥ME,则∠MEN=90°,∴菱形EMFN是正方形;故选:A.10.【解答】解:由题意得:AH=BH=CH=4,FE=FG=GH=EH=2,(1)当0≤t≤2时,如图1,设EF交CH于点K,则S=S矩形EDHK=t×2=2t;(2)2<t≤4时,如图2,设EF与BC交于点M,DE于BC交于点N,S=S正方形DEFG﹣S△EMN=4﹣×[2﹣(4﹣t)]2=﹣(t﹣2)2+4;(3)4<t≤6时,如图3,设GF交BC于点L,S=S△BGL=×[2﹣(t﹣4)]2=(t﹣6)2;故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.【解答】解:17340000=1.734×107,故答案为:1.734×107.12.【解答】解:解不等式①,得x≥4;解不等式②,得x≥2;∴不等式组的解集为x≥4,故答案为x≥4.13.【解答】解:由题意可知:△=4﹣4k≥0,∴k≤1,∵k≠0,∴k≠0且k≤1,故答案为:k≠0且k≤1;14.【解答】解:设缩小后的直角三角形的两条直角边分别为a、b(a<b),根据题意得==,解得a=3,b=6,所以ab=×3×6=9.∴缩小后的直角三角形的面积为9.故答案为:9.15.【解答】解:由图可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴小球最终停留在黑色区域的概率是;故答案为:.16.【解答】解:∵点A的坐标为(3,4),AB=2,∴B(3,2),∵四边形ABCD是矩形,∴AD∥BC,∵AD∥x轴,∴BC∥x轴,∴C点的纵坐标为2,设C(x,2),∵矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,∴k=2x=3×4,∴x=6,∴C(6,2),故答案为(6,2).17.【解答】解:如图,若BC为边,AB是对角线,∵四边形ACBD1是平行四边形,且∠ACB=90°,CA=CB=2,∴BD1=AC=2,若AB,BC为边,∵四边形ABCD3是平行四边形,∴D3A∥BC,AD3=BC=2,∴∠D3AE=∠CBA=45°,∴D3E=A

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功