不等式恒成立问题的大全

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

学习必备欢迎下载不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数),0()(2Rxacbxaxxf,有1)0)(xf对Rx恒成立00a;2)0)(xf对Rx恒成立.00a例1.已知函数])1(lg[22axaxy的定义域为R,求实数a的取值范围。解:由题设可将问题转化为不等式0)1(22axax对Rx恒成立,即有04)1(22aa解得311aa或。所以实数a的取值范围为),31()1,(。若二次不等式中x的取值范围有限制,则可利用根的分布解决问题。例2.设22)(2mxxxf,当),1[x时,mxf)(恒成立,求实数m的取值范围。解:设mmxxxF22)(2,则当),1[x时,0)(xF恒成立当120)2)(1(4mmm即时,0)(xF显然成立;当0时,如图,0)(xF恒成立的充要条件为:1220)1(0mF解得23m。综上可得实数m的取值范围为)1,3[。二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)axf)(恒成立min)(xfa2)axf)(恒成立max)(xfa1.已知两个函数2()816fxxxk,32()254gxxxx,其中k为实数.Oxyx-1学习必备欢迎下载(1)若对任意的33,x,都有)()(xgxf成立,求k的取值范围;(2)若对任意的3321,、xx,都有)()(21xgxf,求k的取值范围.(3)若对于任意1x3,3,总存在03,3x使得)()(10xfxg成立,求k的取值范围.【分析及解】(1)令kxxxxfxgxF1232)()()(23,问题转化为0)(xF在3,3x上恒成立,即0)(minxF即可∵)2(61266)(22'xxxxxF,由0)('xF,得2x或1x.∵(3)45(3)9(1)7(2)20FkFkFkFk,,,,∴45)(minkxF,由045k,解得45k.(2)由题意可知当33,x时,都有minmax)()(xgxf.由01616)('xxf得1x.∵kfkf8)1(24)3(,,kf120)3(,∴120)(maxkxf.由04106)(2'xxxg得321xx或,∵21)3(g,111)3(g,1)1(g,2728)32(g,∴21)(minxg.则21120k,解得141k.(3)若对于任意1x3,3,总存在03,3x使得)()(10xfxg成立,等价于fx的值域是gx的值域的子集,由(2)可知,2()816fxxxk在3,3的值域为8,120kk,32()254gxxxx在3,3的值域为21,111,学习必备欢迎下载于是,8,12021,111kk,即满足821,120111.kk解得913k2.已知xxxxgaxxxf4042)(,287)(232,当]3,3[x时,)()(xgxf恒成立,求实数a的取值范围。解:设cxxxxgxfxF1232)()()(23,则由题可知0)(xF对任意]3,3[x恒成立令01266)(2'xxxF,得21xx或而,20)2(,7)1(aFaF,9)3(,45)3(aFaF∴045)(maxaxF∴45a即实数a的取值范围为),45[。3.函数),1[,2)(2xxaxxxf,若对任意),1[x,0)(xf恒成立,求实数a的取值范围。解:若对任意),1[x,0)(xf恒成立,即对),1[x,02)(2xaxxxf恒成立,考虑到不等式的分母),1[x,只需022axx在),1[x时恒成立而得而抛物线axxxg2)(2在),1[x的最小值03)1()(minagxg得3a注:本题还可将)(xf变形为2)(xaxxf,讨论其单调性从而求出)(xf最小4.已知aaxxxf3)(2,若2)(],2,2[xfx恒成立,求a的取值范围.解析本题可以化归为求函数f(x)在闭区间上的最值问题,只要对于任意2)(],2,2[minxfx.若2)(],2,2[xfx恒成立2)(],2,2[minxfx237)2()(22minafxfa或243)2()(2222minaaafxfa或27)2()(22minafxfa,即a的取值范围为]222,5[.值。三、分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有:1)为参数)aagxf)(()(恒成立max)()(xfag2)为参数)aagxf)(()(恒成立max)()(xfag学习必备欢迎下载实际上,上题就可利用此法解决。略解:022axx在),1[x时恒成立,只要xxa22在),1[x时恒成立。而易求得二次函数xxxh2)(2在),1[上的最大值为3,所以3a。1、已知函数lg2afxxx,若对任意2,x恒有0fx,试确定a的取值范围。解:根据题意得:21axx在2,x上恒成立,即:23axx在2,x上恒成立,设23fxxx,则23924fxx当2x时,max2fx所以2a2、已知,1x时,不等式21240xxaa恒成立,求a的取值范围。解:令2xt,,1x0,2t所以原不等式可化为:221taat,要使上式在0,2t上恒成立,只须求出21tftt在0,2t上的最小值即可。22211111124tfttttt11,2tmin324ftf234aa1322a3.已知函数]4,0(,4)(2xxxaxxf时0)(xf恒成立,求实数a的取值范围。解:将问题转化为xxxa24对]4,0(x恒成立。令xxxxg24)(,则min)(xga由144)(2xxxxxg可知)(xg在]4,0(上为减函数,故0)4()(mingxg∴0a即a的取值范围为)0,(。注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。例4已知函数|54|)(2xxxf,若在区间]5,1[上,kkxy3的图象位于函数f(x)的上方,求k的取值范围.解析本题等价于一个不等式恒成立问题,即对于543],5,1[2xxkkxx恒成立,式子中有两个变量,可以通过变量分离化归为学习必备欢迎下载求函数的最值问题.对于543],5,1[2xxkkxx恒成立3542xxxk对于]5,1[x恒成立,令]5,1[,3542xxxxy,设]8,2[,3ttx,则],8,2[,10)16(ttty4t当,即x=1时2maxy,k的取值范围是k2.变式若本题中将kkxy3改为2)3(xky,其余条件不变,则也可以用变量分离法解.由题意得,对于54)3(],5,1[22xxxkx恒成立22)3(54xxxk对于]5,1[x恒成立,令]5,1[,)3(5422xxxxy,设]8,2[,3ttx,则,169)454(1101622ttty]8,2[t,时即当51,454xt,169maxy,k的取值范围是k169.4.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若0)()(0],1,1[,nmnfmfnmnm时,若12)(2attxf对于所有的]1,1[],1,1[ax恒成立,求实数t的取值范围.解析本题不等式中有三个变量,因此可以通过消元转化的策略,先消去一个变量,容易证明f(x)是定义在[-1,1]上的增函数,故f(x)在[-1,1]上的最大值为f(1)=1,则12)(2attxf对于所有的]1,1[],1,1[ax恒成立1212att对于所有的]1,1[a恒成立,即022tta对于所有的]1,1[a恒成立,令22)(ttaag,只要0)1(0)1(gg,022ttt或或.四、变换主元法处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化。例1已知对于任意的a∈[-1,1],函数f(x)=ax2+(2a-4)x+3-a0恒成立,求x的取值范围.解析本题按常规思路是分a=0时f(x)是一次函数,a≠0时是二次函数两种学习必备欢迎下载情况讨论,不容易求x的取值范围。因此,我们不能总是把x看成是变量,把a看成常参数,我们可以通过变量转换,把a看成变量,x看成常参数,这就转化一次函数问题,问题就变得容易求解。令g(a)=(x2+2x-1)a-4x+3在a∈[-1,1]时,g(a)0恒成立,则0)1(0)1(gg,得133133x.例2、若不等式2211xmx对满足2m的所有m都成立,求x的取值范围。解:设2121fmmxx,对满足2m的m,0fm恒成立,2221210202021210xxffxx解得:171322x例3.对任意]1,1[a,不等式024)4(2axax恒成立,求x的取值范围。分析:题中的不等式是关于x的一元二次不等式,但若把a看成主元,则问题可转化为一次不等式044)2(2xxax在]1,1[a上恒成立的问题。解:令44)2()(2xxaxaf,则原问题转化为0)(af恒成立(]1,1[a)。当2x时,可得0)(af,不合题意。当2x时,应有0)1(0)1(ff解之得31xx或。故x的取值范围为),3()1,(。注:一般地,一次函数)0()(kbkxxf在],[上恒有0)(xf的充要条件为0)(0)(ff。四、数形结合法数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。我们知道,函数图象和不等式有着密切的联系:1))()(xgxf函数)(xf图象恒在函数)(xg图象上方;2))()(xgxf函数)(xf图象恒在函数)

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功