:1998204228;:1998206221:(8520923):(1964),,,,,341Vol.34,No.120001AtomicEnergyScienceandTechnologyJan.20009MeV,,(,100084):4MW,315MW2856MHz;,80%;220cm;96MeV,170300mA:;;;;:TL53:A:100026931(2000)012202079MeV315MW,220cm9MeVXX,30cm115m,,9MeV1111,,,,,,,,,,,RF112a/,a/(),a/,,,a/,,,,,,a/,,a/0111113/2,,,2/3,,2/3,,,(f/f=510-7),(6MeV250300mA),2/3114,12z1(P0=3.5MW,I=170mA)Fig.1RemainderofpowerattheendofthestructurealongthelengthinthecaseofP0=3.5MWandI=170mA2z(P0=3.5MW,I=170mA)Fig.2AcceleratingefficiencyvslengthofthestructureinthecaseofP0=3.5MWandI=170mA115,,,[1,2],19MeV6MeVEz(z)(kV/cm)p(z)Ez(z)=67(21310-3z2+0144)z10.50cm42183+017673(z-10.5)10150cmz42100cm121:9MeVp(z)=2tg-1(51910-3z2+0180)z26.25cm018709+81110-3(z-26125)26.25cmz42100cm,9MeV6MeV80%Ez(z)p(z)343Ez(P0=3.5MW,I=170mA)Fig.3ElectricfieldstrengthofbuncherinthecaseofP0=3.5MWandI=170mA4p(P0=3.5MW,I=170mA)Fig.4pofbuncherinthecaseofP0=3.5MWandI=170mA5Fig.5Electricfielddistributioninthecoupler34,40cm,67kV/cmp(0)0143,6MeVe(0)01469MeVe(0)0138,ddz|z=0=0,[3],1(5),zs-1100cm,80,,,:Ez=6197a2P(7)a/=01110=0163P=217MW=10.5cma=1.2cm,Ez=6613kV/cmEz,max=67kV/cm2234679MeV6MeV69MeVFig.6Energyspectrumat9MeVstate2,[4](8)(1)76MeVFig.7Energyspectrumat6MeVstate8Fig.8Crosssectionofdisk2loadedwaveguide19MeVTable1GeometryoftheTWacceleratingcavitya/mmD/mmT/mmb/mmanan+101414031510304100441070441098441084114145115139341004410324410574410452141492161124410043192943192843192915121031331688410041140841133941137316111766341689410041130541123041126817671114653419904100411222411222411222321:9MeV33119109(P0=3.5MW,I=170mA)Fig.9EnergyfollowfrequencyvariationinthecaseofP0=3.5MWandI=170mA10(P0=3.5MW,I=170mA)Fig.10Energyspectrumwidthofoutletvsfre2quencyinthecaseofP0=3.5MWandI=170mA312111211(f0=2856MHz,I=170mA)Fig.11EnergyvsvariationofinputRFpowerinthecaseoff0=2856MHzandI=170mA12(f0=2856MHz,I=170mA)Fig.12CaptureefficiencyvsvariationofinputRFpowerinthecaseoff0=2856MHzandI=170mA423431313(P0=315MW,f0=2856MHz)Fig.13CurveofbeamloadinginthecaseofP0=315MWandf0=2856MHz134,fpEz,(),p,,,X3%,IUfT:(JrJr)I=0.2II;(JrJr)U=4.05UU;(JrJr)f=410-4f;(JrJr)T=2.110-2T,,:II=1%;UU=015%;f=10kHz;T=1:(JrJr)I=0.2%;(JrJr)U=2%;(JrJr)f=0.4%;521:9MeV(JrJr)T=2.1%:JrJr=2.93%3%19959,19951119961,:[1],,,11985()[C]1:[s.n.],198511101151[2],,,1[M]1:,1980135401[3]1[R]1:,19821[4]NakamuraM.AComputationalMethodforDisk2loadedWareguidesWithRoundedDirk2holeEdyes[J].JapanJApplPhys,1968,7(3):257271.PhysicalDesignof9MeVTravellingWaveElectronLinacAcceleratingTubeCHENHuai2bi,DINGXiao2dong,LINYu2zheng(DepartmentofEngineeringPhysics,TsinghuaUniversity,Beijing100084,China)Abstract:Anacceleratingtubeisdescribedinthisthesis.Itisapartofanacceleratorusedforin2spectionofvehiclecargoesinrailcars,trucks,shippingcontainers,orairplanesincustoms.Aklystronwithpowerof4MWandfrequencyof2856MHzwillbeappliedtosupplymicrowavepower.Theelectronscanbeacceleratedbyatravellingwaveintheacceleratingtubeabout220cmlong,withabuncherwhosecaptureefficiencyismorethan80%.Energyofelectronsaftertravellingthroughthetubecanreach9MeV(pulsecurrentintensity170mA)or6MeV(pulsecurrentintensity300mA).Physicaldesignoftheacceleratingtube,includingthecalculationsoflongitudinalparticledynamics,structureparameterandworkingcharacteriscarriedout.Keywords:travellingwaveelectronlinac;acceleratingtube;particledynamics;buncher;disk2loadedwaveguide6234