两机五节点网络潮流计算牛拉法设计说明书

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

两机五节点网络潮流计算牛拉法设计说明书第一章前言1.1潮流计算1.1.1潮流计算概述潮流计算是研究电力系统稳态运行情况的一种基本电气计算,常规潮流计算的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。潮流计算的结果是电力系统稳定计算和故障分析的基础。通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。潮流计算还可以为继电保护和自动装置定整计算、电力系统故障计算和稳定计算等提供原始数据。具体表现在以下方面:(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。(3)正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。(4)预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。总结为在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。此外,电力系统潮流计算也是计算系统动态稳定和静态稳定的基础。所以潮流计算是研究电力系统的一种很重要和基础的计算。1.1.2潮流计算的要求电力系统运行必须满足一定技术和经济上的要求。这些要求够成了潮流问题中某些变量的约束条件,常用的约束条件如下:1.节点电压应满足minmax(1,2,)iiiUUUin式(1-1)从保证电能质量和供电安全的要求来看,电力系统的所有电气设备都必须运行在额定电压附近。PU节点电压幅值必须按上述条件给定。因此,这一约束条件对PQ节点而言。2.节点的有功功率和无功功率应满足minmaxminmaxGiGiGiGiGiGiPPPQQQ式(1-2)PQ节点的有功功率和无功功率,以及PU节点的有功功率,在给定是就必须满足上述条件,因此,对平衡节点的P和Q以及PU节点的Q应按上述条件进行检验。3.节点之间电压的相位差应满足max||||||ijijij式(1-3)为了保证系统运行的稳定性,要求某些输电线路两端的电压相位不超过一定的数值。这一约束的主要意义就在于此。因此,潮流计算可以归结为求解一组非线性方程组,并使其解答满足一定的约束条件。常用的方法是迭代法和牛顿法,在计算过程中,或得出结果之后用约束条件进行检验。如果不能满足要求,则应修改某些变量的给定值,甚至修改系统的运行方式,重新进行计算。1.1.3潮流计算的优势电力系统潮流计算是电力系统分析中的一种最基本的计算,是对复杂电力系统正常和故障条件下稳态运行状态的计算。潮流计算的目标是求取电力系统在给定运行状态的计算。即节点电压和功率分布,用以检查系统各元件是否过负荷。各点电压是否满足要求,功率的分布和分配是否合理以及功率损耗等。对现有电力系统的运行和扩建,对新的电力系统进行规划设计以及对电力系统进行静态和暂态稳定分析都是以潮流计算为基础。潮流计算结果可用于电力系统稳态研究,安全估计或最优潮流等,实际电力系统的潮流计算主要采用牛顿-拉夫逊法。借由MATLAB可以轻松实现计算复杂的电力系统潮流分布。1.2MATLAB简介1.2.1MATLAB概述MATLAB的含义是矩阵实验室(MatrixLaboratory),是美国MathWork公司于1982推出的一套高性能的数值计算可视化软件,,包括MATLAB主程序、SIMULINK动态系统仿真包和各种专业工具箱它集数值分析,矩阵计算,信号处理和图形显示于一体,构成一个方便的,界面友好的用户环境,具有极强大的计算功能和极高的编程效率,特别适合于科学计算、数值分析、系统仿真和信号处理等任务。MATLAB程学设计语言结构完整,且具有优良的移植性,它的基本数据元素是不需要定义的数组。它可以高效率的解决工业计算问题,特别是关于矩阵和矢量的计算。通过MATLAB语言,可以用类似数学公式的方式来编写算法,大大降低了程序需要的难度别难并节省了时间,从而可把主要的经历集中在算法的构思而不是编程上。学习运用MATLAB计算电力系统潮流分布是本次课程设计的重点,可以说,作为工科学生,会运用MATLAB来解决工程问题已成为必须。到目前为止,MATLAB已发展成为国际上最优秀的科技应用软件之一。它的功能十分强大,不仅仅可以实现计算潮流分布,还可以模拟仿真各式各样的数值系统,工程。这里将借助MATLAB来完成用直角牛顿-拉夫逊法计算电力系统潮流分布。1.2.2MATLAB语言1、MATLAB语言相关指令表1-1管理命令和函数help在线帮助文件doc装入超文本说明whatM、MAT、MEX文件的目录列表type列出M文件lookfor通过help条目搜索关键字which定位函数和文件Demo运行演示程序Path控制MATLAB的搜索路径管理变量和工作空间Who列出当前变量Whos列出当前变量(长表)Load从磁盘文件中恢复变量Save保存工作空间变量Clear从存中清除变量和函数Pack整理工作空间存Size矩阵的尺寸Length向量的长度disp显示矩阵或与文件和操作系统有关的命令cd改变当前工作目录Dir目录列表Delete删除文件Getenv获取环境变量值!执行DOS操作系统命令Unix执行UNIX操作系统命令并返回结果Diary保存MATLAB任务控制命令窗口Cedit设置命令行编辑Clc清命令窗口Home光标置左上角Format设置输出格式Echo底稿文件使用的回显命令more在命令窗口中控制分页输出启动和退出MATLABQuit退出MATLABStartup引用MATLAB时所执行的M文件Matlabrc主启动M文件一般信息InfoMATLAB系统信息及Mathworks公司信息Subscribe成为MATLAB的订购用户hostidMATLAB主服务程序的识别代号Whatsnew在说明书中未包含的新信息Ver版本信息操作符和特殊字符+加—减*矩阵乘法.*数组乘法^矩阵幂.^数组幂\左除或反斜杠/右除或斜杠./数组除KronKronecker量积:冒号()圆括号[]方括号.小数点..父目录…继续,逗号;分号%注释!感叹号‘转置或引用=赋值==相等关系操作符&逻辑与|逻辑或~逻辑非xor逻辑异或逻辑函数Exist检查变量或函数是否存在Any向量的任一元为真,则其值为真All向量的所有元为真,则其值为真Find找出非零元素的索引号三角函数Sin正弦Sinh双曲正弦Asin反正弦Asinh2、MATLAB语言基本运算矩阵是MATLAB数据存储的基本单元,而矩阵的运算是MATLAB语言的核心,在MATLAB言系统中几乎一切运算均是以对矩阵的操作为基础的。矩阵的基本数学运算包括矩阵的四则运算、与常数的运算、逆运算、行列式运算、秩运算、特征值运算等基本函数运算,这里进行简单介绍。(1)四则运算矩阵的加、减、乘运算符分别为“+,—,*”,用法与数字运算几乎相同,但计算时要满足其数学要求在MATLAB中矩阵的除法有两种形式:左除“\”和右除“/”。在传统的MATLAB算法中,右除是先计算矩阵的逆再相乘,而左除则不需要计算逆矩阵直接进行除运算。通常右除要快一点,但左除可避免被除矩阵的奇异性所带来的麻烦。在MATLAB6中两者的区别不太大。(2)与常数的运算常数与矩阵的运算即是同该矩阵的每一元素进行运算。但需注意进行数除时,常数通常只能做除数。(3)基本函数运算矩阵的函数运算是矩阵运算中最实用的部分,常用的主要有以下几个:det(a)求矩阵a的行列式eig(a)求矩阵a的特征值inv(a)或a^(-1)求矩阵a的逆矩阵rank(a)求矩阵a的秩trace(a)求矩阵a的迹(对角线元素之和)我们在进行工程计算时常常遇到矩阵对应元素之间的运算。这种运算不同于前面讲的数学运算,为有所区别,我们称之为数组运算。(4)基本数学运算数组的加、减与矩阵的加、减运算完全相同。而乘除法运算有相当大的区别,数组的乘除法是指两同维数组对应元素之间的乘除法,它们的运算符为“.*”和“./”或“.\”。前面讲过常数与矩阵的除法运算中常数只能做除数。在数组运算中有了“对应关系”的规定,数组与常数之间的除法运算没有任何限制。另外,矩阵的数组运算中还有幂运算(运算符为.^)、指数运算(exp)、对数运算(log)、和开方运算(sqrt)等。有了“对应元素”的规定,数组的运算实质上就是针对数组部的每个元素进行的。矩阵的幂运算与数组的幂运算有很大的区别。(5)逻辑关系运算逻辑运算是MATLAB中数组运算所特有的一种运算形式,也是几乎所有的高级语言普遍适用的一种运算。第二章牛顿-拉夫逊法概述2.1牛顿-拉夫逊基本原理潮流计算的目标是求取电力系统在给定运行状态的计算。即节点电压和功率分布,用以检查系统各元件是否过负荷。各点电压是否满足要求,功率的分布和分配是否合理以及功率损耗等。对现有电力系统的运行和扩建,对新的电力系统进行规划设计以及对电力系统进行静态和暂态稳定分析都是以潮流计算为基础。潮流计算结果可用如电力系统稳态研究,安全估计或最优潮流等对潮流计算的模型和方法有直接影响。实际电力系统的潮流技术那主要采用牛顿-拉夫逊法。牛顿--拉夫逊法(简称牛顿法)在数学上是求解非线性代数方程式的有效方法。其要点是把非线性方程式的求解过程变成反复地对相应的线性方程式进行求解的过程。即通常所称的逐次线性化过程。对于非线性代数方程组:()0fx即12(,,,)0infxxx(1,2,,)in(2-1-1)在待求量x的某一个初始估计值(0)x附近,将上式展开成泰勒级数并略去二阶及以上的高阶项,得到如下的经线性化的方程组:(0)'(0)(0)()()0fxfxx(2-1-2)上式称之为牛顿法的修正方程式。由此可以求得第一次迭代的修正量(0)'(0)1(0)[()]()xfxfx(2-1-3)将(0)x和(0)x相加,得到变量的第一次改进值(1)x。接着就从(1)x出发,重复上述计算过程。因此从一定的初值(0)x出发,应用牛顿法求解的迭代格式为:'()()()()()kkkfxxfx(2-1-4)(1)()()kkkxxx(2-1-5)上两式中:'()fx是函数()fx对于变量x的一阶偏导数矩阵,即雅可比矩阵J;k为迭代次数。有上式可见,牛顿法的核心便是反复形式并求解修正方程式。牛顿法当初始估计值(0)x和方程的精确解足够接近时,收敛速度非常快,具有平方收敛特性。牛顿潮流算法突出的优点是收敛速度快,若选择到一个较好的初值,算法将具有平方收敛特性,一般迭代4~5次便可以收敛到一个非常精确的解。而且其迭代次数与所计算网络的规模基本无关。牛顿法也具有良好的收敛可靠性,对于对以节点导纳矩阵为基础的高斯法呈病态的系统,牛顿法也能可靠收敛。牛顿法所需的存量及每次迭代所需时间均较高斯法多。牛顿法的可靠收敛取决于有一个良好的启动初值。如果初值选择不当,算法有可能根本不收敛或收敛到一个无法运行的节点上。对于正常运行的系统,各节点电压一般均在额定值附近,偏移不会太大,并且各节点间的相位角差也不大,所以对各节点可以采用统一的电压初值(也称为平直电压),如假定:(0)1iU(0)0i或(0)1ie(0)0if

1 / 37
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功