决策支持系统发展综述空军工程大学导弹学院雷英杰运算机是当代进展最为迅速的科学技术之一,其应用几乎已深入到人类活动和生活的一切领域,大大提升了社会生产力,引起了经济结构、社会结构和生活方式的深刻变化和变革。运算机科学技术具有极大的综合性质,与众多科学技术相交叉而反过来又渗入更多的科学技术,促进它们的进展。运算机科学与其他学科相交叉产生了许多新学科,推动着科学技术向更宽敞的领域进展。智能决策支持系统是以信息技术为手段,应用治理科学、运算机科学及有关学科的理论和方法,针对半结构化和非结构化的决策咨询题,通过提供背景材料、协助明确咨询题、修改完善模型、列举可能方案、进行分析比较等方式,为治理者做出正确决策提供关心的智能型人机交互信息系统。实践表明,只有当决策支持系统具有较丰富的知识和较强的知识处理能力时,才能向决策者提供更为有效的决策支持。考虑到IDSS是在传统DSS基础上进展起来的,因此那个地点先介绍有关决策、决策科学和决策支持技术的差不多概念。一、DSS的产生与进展DSS的产生背景电子数据处理EDP(ElectronicDataProcessing):提升了工作效率,把人们从繁琐的事务处理中解脱出来。缺点:仅局限于具体信息处理,不共享,不考虑整体或部门情形。治理信息系统MIS(ManagementInformationSystems):整体分析,系统设计,信息共享,部门和谐。缺点:难于习惯多变的内、外部治理环境,对治理人员的决策关心十分有限。决策支持系统DSS(DecisionSupportSystems):70年代中期Keen和ScottMorton在《治理决策系统》(1971)一书中提出。目标:对治理者做决策提供技术支持。背景:运筹学模型进展差不多比较完善,多目标决策分析突破了单一效用理论的框架,运算机软、硬件及网络技术的迅猛进展,人工智能专门是知识处理技术的进展,数据库技术、图形显示技术、各类工具软件的进展与完善,构成了DSS形成与进展的技术基础。DSS的进展70年代,ScottMorton在《治理决策系统》(1971)一书中首次提出DSS。PeterG.W.Keen等人编写了一套丛书,阐明DSS的要紧观点,初步构造出DSS的差不多框架。1978至1988年,DSS得到迅速进展,许多有用系统被开发出来,投入实际应用,产生明显效益。1988至现在,DSS技术连续进展,目前已差不多成熟。新一代DSS研究仍旧十分活跃。DSS的理论基础信息论信息是现代科学技术中普遍使用的一个重要概念。信息论是运用信息的观点,把系统看作是借助于信息的猎取、传送、加工处理、输出而实现其有目的性行为的研究方法。运算机技术运算机软件技术、硬件技术、网络技术、图形处理技术、知识处理技术等。治理科学与运筹学治理科学MS(ManagementScience):面向治理者,研究决策咨询题,如决策目标、决策效能等。运筹学OR(OperationsResearch):提供一系列优化、仿真、决策等模型。信息经济学在信息时代,研究信息的产生、获得、传递、加工处理、输出等方面的价值咨询题。从经济学的角度,研究信息产生和获得的成本是多少?利润是多少?即研究信息价值咨询题。行为科学研究决策者的决策风格、在决策过程中的决策行为等,指导DSS的设计和开发。涉及到决策者的心理学。人工智能将人工智能技术用于治理决策是一项开拓性工作。当前研究的IDSS确实是DSS与AI技术相结合的产物,它用领域专家的知识来选择和组合模型,完成咨询题的推理和运行,为用户提供智能的交互式接口。人工智能技术作为运算机应用研究的前沿,近十年取得了惊人的进展,出现了光明的前景。专家系统、智能机器人和模式识别是人工智能中最活跃、最富有成果的三个研究领域。其中专家系统ES(ExpertSystems)研究,取得了许多有用化的成果。当今世界上差不多有上千个专家系统,应用于医疗、诊断、探矿、军事、调度、质谱分析、运算机配置、辅助教育等各种领域,并已开始涉足财务分析、打算治理、工程评估、法律咨询等治理决策领域。DSS和ES:处于不同的学科范畴,有着不同的解决咨询题的方法。DSS要紧运用数据和模型,ES要紧运用知识和推理。在治理科学领域,一个是方兴未艾,一个是后起之秀,各有特色。然而它们的互相结合和互相渗透,将会把运算机用于决策支持技术推向一个新的高度。决策的正确性关系到经营成效和事业成败,决策理论、决策方法和决策工具的科学化和现代化是正确性的重要保证。人工智能将为DSS提供有效的理论和方法。例如,知识的表示和建模,推理、演绎和咨询题求解及各种搜索技术,再加上功能专门强的人工智能语言,都为DSS的进展走向更加有用的时期提供强有力的理论和方法的支持。DSS与有关技术的关系决策与推测的关系决策:制造以后,基于推测,实现今后一个目标。推测:预言以后,基于分析、研究、仿真、实验。例如:灾难推测与防灾决策、日常推测与决策、经营推测与决策、宏观推测与决策、贯序推测与决策、为重大决策作预备性研究等。DSS与MS/OR的关系MS:处理结构化咨询题,运用分析的观点。OR:处理结构化咨询题,研究对象要紧集中在数学规划、决策论、计策论等理论和方法上。DSS:处理战略、规划等半结构化和非结构化一类的决策咨询题。DSS与MIS的关系MIS:收集、传递、储备、加工处理各种信息,监测运营数据,利用历史数据推测以后,用指定的数学方法分析数据,提供全面数据和分析报告。面向治理人员,提供低层次的决策支持。DSS:面向决策者,提供适当的决策支持,是MIS的高级时期。DSS与ES的关系IDSS=DSS+ESES:利用知识和推理机,处理半结构化和非结构化咨询题。DSS:使用数据和模型,处理结构化咨询题,与ES结合后,可处理半结构化和非结构化咨询题。二、DSS的差不多概念决策过程决策过程:如图1所示。图1决策过程决策科学要紧研究:确定目标、设计方案、评判方案三个差不多时期。这三个差不多时期又分别称为懂得、设计、选择活动。决策咨询题的类型决策咨询题的类型(按结构化程度分为):结构化、半结构化、非结构化三种。结构化程度:对某一过程的环境和规律,能否用明确的语言(数学的或逻辑学的,形式的或非形式的,定量的或推理的)给予清晰的描述。结构化咨询题:能够描述清晰的咨询题。三个时期都能使用确定的算法或决策规则。非结构化咨询题:不能够描述清晰,而只能凭直觉或体会作出判定的咨询题。三个时期都不能使用确定的算法或决策规则。半结构化咨询题:介于两者之间的咨询题。一个或二个时期能使用确定的算法或决策规则。决策咨询题的性质和层次决策咨询题的层次:办事员(作业调度)、部门负责人(运筹治理)、顶层负责人(战略规划)。按照决策咨询题的层次和类型,决策咨询题可分为9类,如表1所示。表1决策咨询题的类型作业调度运筹治理战略规划支持需求结构化库存报表、零件定货线性规划、生产调度新厂位置选择EDPMS/OR半结构化股票治理、贸易开发市场、经费预算资本获利分析DSS非结构化为杂志选择封面聘用治理人员研究、开发分析体会和直觉设计方案确定目标评判方案实施方案环境2.4决策风格按猎取数据的方式分:感知型(S)、直觉型(N)。感知型——喜爱与特定咨询题有关的硬数据。直觉型——喜爱描写可能性的整体信息。按处理数据的方式分:摸索型(T)、感受型(F)。摸索型——喜爱用逻辑或其他规范化的手段去推理。感受型——喜爱用个人的术语来考虑咨询题。组合起来,共有四种类型的决策风格:系统型(ST)、思辩型(NT)、司法型(SF)、直观推断型(NF)。系统型(ST):喜爱运用量化信息,喜爱运用成本效益分析和评判的研究作为辅助决策的工具。思辩型(NT):善于思索以后的可能性,喜爱运用带有灵敏度分析的决策树作为决策的关心。司法型(SF):注意力集中于当前的环境,喜爱运用决策小组进行决策。直观推断型(NF):十分重视现实的可能性,喜爱运用双向调整的方法来达到决策的目的。DSS的构造与系统结构DSS的构造研究要紧解决DSS的组成咨询题,即组成DSS的部件。现在,经典提法是:DSS=四库系统+对话系统(人机界面)四库系统:数据库系统、模型库系统、方法库系统、知识库系统。当前,也有人讲5库系统(+文本库)、6库系统(+图形库)、7库系统(+语音库)、8库系统(工具库)等。DSS的系统结构要紧研究DSS各要紧部件的连接关系。人机界面技术要紧研究内容集中在:可视化图形界面技术基于多媒体技术的界面技术自然语言界面技术数据库系统数据库系统包括数据库及其治理系统,其差不多技术与一样数据库及其治理系统差不多相同。但有自己的特点。共同点:数据的独立性最小冗余度最大的共享性统一治理与操纵适当的反映时刻整体性(完整性)可修改性和可扩充性安全和保密简明性DSS数据库系统的特点:面向决策支持过程组织和治理数据面向模型、面向模型生成来使用数据数据描述方式要面向不同的决策者模型库系统模型——是以某种形式对一个系统的本质属性的描述,揭示系统的功能、行为及其变化规律。模型库系统——以库的形式对模型进行组织和治理,包括模型库及模型库治理系统。模型库(ModelBase)提供模型的储备和表示模式,模型库治理系统提供模型的提取、访咨询、更新和合成等操作。人们认识客观世界一样有三种方法:逻辑推理法实验法模型法模型法是我们认识客观世界的最得力、最方便、最有效的方法。注意,并非所有模型差不多上数学模型,并非所有模型差不多上定量的。例如,门捷列夫元素周期表。3.3.1模型群解决软科学所涉及的咨询题时,可利用的模型已达100多个,按照他们的功能和用途可分为若干模型群。推测模型群定性模型:特尔斐法、主观概率推测法、交叉阻碍巨阵法等定量模型:回来推测、平滑推测、马尔柯夫链推测等回来推测:一元回来、多元线性回来、非线性回来等;平滑推测:平均推测法、指数推测法等系统结构模型群要紧用来分析社会经济系统以及其他系统的结构,反映系统各要素之间的要紧联系和关联作用,从宏观上和结构上来揭示系统的运行规律。系统结构模型、层次分析模型、投入产出模型、系统动力学模型等。数量经济模型群:计量经济模型、经济操纵论模型等。优化模型群:线性规划、非线性规划、动态规划、目标规划和最优操纵等不确定模型群:模糊数学模型、灰色模型、随机模型等决策模型群:单目标风险性决策、多目标决策,以及一些不确定性决策方法等系统综合模型群:即大系统理论。模型体系解决某一特定系统工程咨询题的一系列模型。(从概念上)模型库模型库提供模型的储备和表示模式。模型的表示形式:模型的程序表示:基于程序的表示方法。模型的数据表示:基于数据的表示方法。模型的逻辑表示:基于知识的表示方法。3.3.4当前研究课题模型的自动生成技术模型治理的人工智能方法模型治理与数据治理的结合方法库系统方法库系统(MBS)综合了数据库和程序库。方法库——类似于程序库,包含面向多种应用的程序包或功能程序。方法库治理系统——对程序方法提供多种功能操作。具有扩充的程序组件可与多种数据库系统相连接可随时加入新的程序组件知识库系统1差不多概念数据——客观事物的属性、数量、位置及其相互关系等的抽象表示。信息——数据所表示的含义(语义),因而讲“数据是信息的载体”。知识——信息之间的结构化关联关系。知识分类事实——指人类对客观事物属性的值或状态的描述。(不包含任何变量)规则——表示因果关系的知识,分为前提(条件)和结论两部分。规律——带有变量的规则。因此,规则是规律的例化。3.5.3知识的属性真实性相对性不完全性模糊性可表示性推理方法演绎推理:P→Q,由前提到结论归纳推理:由个别到一样,“主观不充分置信推理”联想与类比综合与分析推测假设与验证从不同的角度还可分为演绎推理、归纳推理、缺省推理确定性推理、不确定性推理单调推理、非单调推理启发式推理、非启发式推理基于知识的推理、统计推理、直觉推理正向推理、逆向推理、混合推理、双向推理——推理操纵策略知识库系统知识库——提供知识的表示和储备。知识库治理系统——提供对知识(规则)的储备、检索、修改、检查等操作。推理机——利用知识库中的知识进行