12020年安徽省中考数学仿真模拟试卷参考答案与试题解析一、选择题1.(4分)(•安徽模拟)在实数0,﹣,,|﹣2|中,最小的是(B)A.B.﹣C.0D.|﹣2|2.(4分)(•山西)为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为(D)A.0.927×1010B.92.7×109C.9.27×1011D.9.27×1093.(4分)(•安徽模拟)下列运算正确的是(B)A.(a﹣b)2=a2﹣b2B.C.(﹣2)3=8D.a6﹣a3=a34.(4分)(•茂名)在数轴上表示不等式组的解集,正确的是(C)A.B.C.D.5.(4分)(•黔南州)下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y随x的增大而减小的函数有(B)A.1个B.2个C.3个D.4个6.(4分)(•安徽模拟)如图,O是线段BC的中点,A、D、C到O点的距离相等.若∠ABC=30°,则∠ADC的度数是(D)A.30°B.60°C.120°D.150°7.(4分)(安徽模拟)如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为(B)2点评:解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.8.(4分)(2009•河北)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是(C)A.13=3+10B.25=9+16C.36=15+21D.49=18+319.(4分)(•安徽)武汉市2010年国内生产总值(GDP)比2009年增长了12%,由于受到国际金融危机的影响,预计今年比2010年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是(D)A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)210.(4分)(乐山)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是(B)A.0<t<1B.0<t<2C.1<t<2D.﹣1<t<1解答:解:∵二次函数y=ax2+bx+1的顶点在第一象限,且经过点(﹣1,0),∴易得:a﹣b+1=0,a<0,b>0,由a=b﹣1<0得到b<1,结合上面b>0,所以0<b<1①,由b=a+1>0得到a>﹣1,结合上面a<0,所以﹣1<a<0②,∴由①+②得:﹣1<a+b<1,在不等式两边同时加1得0<a+b+1<2,∵a+b+1=t代入得0<t<2,故选:B.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(•安徽模拟)因式分解:9a3b﹣ab=ab(3a+1)(3a﹣1).12.(5分)(湖州)甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别是=0.6,=0.8,则运动员甲的成绩比较稳定.13.(5分)(•安徽模拟)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是.3解答:解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵AB=2,∴AE=,PA=2,∴PE=1.∵点D在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴点D的横坐标为2,∴OC=2,∴DC=OC=2,∴a=PD+DC=2+.故答案为2+.14.(5分)(•安徽模拟)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③设OD=m,AE+AF=n,则S△AEF=mn;④EF是△ABC的中位线.其中正确的结论是①②.分析:根据角平分线的定义得∠ABC=2∠1,∠ACB=2∠2,根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,∠1+∠2=90°﹣∠A,而∠1+∠2+∠BOC=180°,则180°﹣∠BOC=90°﹣∠A,可得到∠BOC=90°∠A;由EF∥BC得到∠1=∠3,∠2=∠4,易得∠EBO=∠3,∠4=∠FCO,则EB=EO,FC=FO,即BE+FC=EF,根据两圆的位置关系的判定方法得到以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;连OA,过O作OG⊥AE于G,根据内心的性质得OA平分∠BAC,由角平分线定理得到OG=OD=m,然后利用三角形的面积公式易得S△AEF=S△OAE+S△OAF=AE•m+AF•m=(AE+AF)•m=mn;若EF是△ABC的中位线,则EB=AE,FC=AF,而EB=EO,FC=FO,则AE=EO,AF=FO,即有AE+AF=EO+FO=EF,这不符合三角形三边的关系.三、(本大题共2小题,每小题8分,满分16分)415.(8分)(•安徽模拟)先化简,再求值:(﹣1)÷,其中a=.﹣.﹣.16.(8分)(•资阳)小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).解答:解:连接PA、PB,过点P作PM⊥AD于点M;延长BC,交PM于点N则∠APM=45°,∠BPM=60°,NM=10米设PM=x米在Rt△PMA中,AM=PM×tan∠APM=xtan45°=x(米)在Rt△PNB中,BN=PN×tan∠BPM=(x﹣10)tan60°=(x﹣10)(米)由AM+BN=46米,得x+(x﹣10)=46解得,=18﹣8,∴点P到AD的距离为米.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(•本溪)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.解答:解:(1)连接AA1,然后从C点作AA1的平行线且A1C1=AC.5同理找到点B.(2)画图正确.(3);弧B1B2的长=.点B所走的路径总长=.18.(8分)(•重庆)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),6(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(德阳)已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.解答:解:(1)∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,代入反比例函数解析式,=y,解得y=6,∴点A的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5;7(2)∵第一象限内点C到y轴的距离为3,∴点C的横坐标为3,∴y==2,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,联立,解得(舍去),,∴点B的坐标为(﹣6,﹣1),∴点B到CD的距离为2﹣(﹣1)=2+1=3,S△ABC=S△ACD+S△BCD=×6×4+×6×3=12+9=21.点评:本题考查了反比例函数图象与一次函数图象的交点问题,根据已知条件先判断出点A的横坐标是解题的关键.20.(10分)(•安徽模拟)已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:(1)AE=AB;(2)如果BM平分∠ABC,求证:BM⊥CE.解答:证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠E=∠DCM,在△AEM和△DCM中,8,∴△AEM≌△DCM(AAS),∴AE=CD,∴AE=AB;(2)∵BM平分∠ABC,∴∠ABM=∠CBM,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBM=∠AMB,∴∠ABM=∠AMB,∴AB=AM,∵AB=AE,∴AM=BE,∴∠EMB=90°,即BM⊥CE.点评:此题考查了平行四边形的性质、全等三角形的判定与性质以及直角三角形的判定.此题难度适中,注意掌握数形结合思想的应用.六、(本题满分12分)21.(12分)(安徽模拟)(1)解下列方程:①根为x1=1,x2=2;②根为x1=2,x2=3;③根为x1=3,x2=4;(2)根据这类方程特征,写出第n个方程为x﹣3+=2n+1,其根为x1=n,x2=n+1.(3)请利用(2)的结论,求关于x的方程(n为正整数)的根.解得:x1=n+3,x2=n+4.点评:本题考查了分式方程的解法,注意方程的式子的特点,以及对应的方程的解之间的关系是解决本题的关键.七、(本题满分12分)22.(12分)(长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?9(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?解答:解:(1)当40≤x≤60时,令y=kx+b,则,解得,故,同理,当60<x≤80时,.故y=;(2)设公司可安排员工a人,定价50元时,由5=(﹣×50+8)(50﹣40)﹣15﹣0.25a,得30﹣15﹣0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x≤60时,利润w1=(﹣x+8)(x﹣40)﹣15﹣20=﹣(x﹣60)2+5,则当x=60时,wmax=5万元;10当60<x<100时,w2=(﹣x+5)(x﹣40)﹣15﹣0.25×80=﹣(x﹣70)2+10,∴x=70时,wmax=10万元,∴要尽早还清贷款,只有