正弦函数余弦函数的性质

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

正弦函数、余弦函数的性质123456-1-0.50.51123456-1-0.50.51正弦函数.余弦函数的图象和性质与x轴的交点)0,0()0,()0,2(图象的最高点图象的最低点)1,(23与x轴的交点)0,(2)0,(23图象的最高点)1,0()1,2(图象的最低点)1,((五点作图法)2oxy---11--13232656734233561126-oxy---11--13232656734233561126)1,2(简图作法(1)列表(列出对图象形状起关键作用的五点坐标)(3)连线(用光滑的曲线顺次连结五个点)(2)描点(定出五个关键点)正弦曲线:sinyxxRxy1-1对称性:对称轴:,2xkkZ对称中心:(,0)kkZ奇偶性:奇函数正弦曲线:sinyxxRxy1-1最高点:(2,1)2kkZ最低点:(2,1)2kkZ单调性:在区间上是增函数[2,2],22kkkZ在区间上是减函数3[2,2],22kkkZ最值:22xk当时,max1y22xkmin1y当时,对称性:对称轴:,xkkZ对称中心:(,0)2kkZ奇偶性:偶函数余弦曲线:cosyxxRxy1-1余弦曲线:cosyxxRxy1-1最高点:(2,1)kkZ最低点:(2,1)kkZ单调性:在区间上是增函数[2,2],kkkZ在区间上是减函数[2,2],kkkZ最值:当x=2k时,max1ymin1y当x=k时,例1.下列函数有最大、最小值吗?如果有,请写出取最大、最小值时的自变量x的集合,并说出最大、最小值分别是什么.cos1,3sin2,.yxxRyxxR(1);(2)解:这两个函数都有最大值、最小值.(1)使函数取得最大值的x的集合,就是使函数取得最大值的x的集合cos1,yxxRcos,yxxR{|2,}xxkkZ使函数取得最小值的x的集合,就是使函数取得最小值的x的集合cos1,yxxRcos,yxxR{|(21),}xxkkZ函数的最大值是1+1=2;最小值是-1+1=0.cos1,yxxR例1.下列函数有最大、最小值吗?如果有,请写出取最大、最小值时的自变量x的集合,并说出最大、最小值分别是什么.cos1,3sin2,.yxxRyxxR(1);(2)解:(2)令t=2x,因为使函数取最大值的t的集合是3sin,yttR{|2,}2ttkkZ222xtk由4xk得所以使函数取最大值的x的集合是3sin2,yxxR{|,}4xxkkZ同理,使函数取最小值的x的集合是3sin2,yxxR{|,}4xxkkZ函数取最大值是3,最小值是-3。3sin2,yxxR周期性对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期。•周期性的图象理解-5-2.52.557.51012.5-1-0.50.51-5-2.52.557.51012.5-1-0.50.51例题2、求下列函数的周期:1:y=3cosxx∈R解:因为余弦函数的周期是2π,所以自变量x只要并且至少需要增长到x+2π,余弦函数的值才会重复取得,函数y=3cosx的值才能重复取得,所以T=2π。2、y=sin2xx∈R解、令z=2x,那么x∈R必须并且只需z∈R,且函数y=sinz,z∈R的T=2π,即变量z只要并且至少要增加到z+2π,函数y=sinz,z∈R的值才能重复取得,而z+2π=2x+2π=2(x+π)故变量x只要并且至少要增加到x+π,函数值就能重复取得,所以y=sin2x,x∈R的T=π3、x∈R)621sin(2xy解:令,那么x∈R必须并且只要z∈R,且函数y=2sinz,z∈R的T=2π,由于。所以自变量z只要并且至少要增加到z+4π,函数值才能重复取得,即T=4π621xz6)4(2126212xxz总结:一般地,函数y=Asin(ωx+φ),x∈R或Y=Acos(ωx+φ),x∈R(A、ω、φ为常数,且A≠0,ω0)的周期是:2T

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功