单相流体对流换热及准则关联式部分一、基本概念主要包括管内强制对流换热基本特点;外部流动强制对流换热基本特点;自然对流换热基本特点;对流换热影响因素及其强化措施。1、对皆内强制对流换热,为何采用短管和弯管可以强化流体的换热?答:采用短管,主要是利用流体在管内换热处于入口段温度边界层较薄,因而换热强的特点,即所谓的“入口效应”,从而强化换热。而对于弯管,流体流经弯管时,由于离心力作用,在横截面上产生二次环流,增加了扰动,从而强化了换热。2、其他条件相同时,同一根管子横向冲刷与纵向冲刷相比,哪个的表面传热系数大,为什么?答:横向冲刷时表面传热系数大。因为纵向冲刷时相当于外掠平板的流动,热边界层较厚,而横向冲刷时热边界层薄且存在由于边界层分离而产生的旋涡,增加了流体的扰动,因而换热强。3、在进行外掠圆柱体的层流强制对流换热实验研究时,为了测量平均表面传热系数,需要布置测量外壁温度的热电偶。试问热电偶应布置在圆柱体周向方向何处?答:横掠圆管局部表面传热系数如图。在0-1800内表面传热系数的平均值hm与该曲线有两个交点,其所对应的周向角分别为φ1,φ2。布置热电偶时,应布置在φ1,φ2所对应的圆周上。由于对称性,在圆柱的下半周还有两个点以布置。4、在地球表面某实验室内设计的自然对流换热实验,到太空中是否仍然有效,为什么?答:该实验到太空中无法得到地面上的实验结果。因为自然对流是由流体内部的温度差从而引起密度差并在重力的作用下引起的。在太空中实验装置格处于失重状态,因而无法形成自然对流,所以无法得到顶期的实验结果。5、管束的顺排和叉排是如何影响换热的?答:这是个相当复杂的问题,可简答如下:叉排时,流体在管间交替收缩和扩张的弯曲通道中流动,而顺排时则流道相对比较平直,并且当流速和纵向管间距s2较小时,易在管的尾部形成滞流区.因此,一般地说,叉排时流体扰动较好,换热比顺排强.或:顺排时,第一排管子正面受到来流的冲击,故φ=0处换热最为激烈,从第二排起所受到的冲击变弱,管列间的流体受到管壁的干扰较小,流动较为稳定。叉排时每排管子受到的冲击相差不大,但由于流体的流动方向不断改变,混合情况比顺流好,一般情况下,差排的平均换热系数比顺排时为大。6、空气沿竖板加热自由流动时,其边界层内的速度分布与空气沿竖板受迫流动时有什么不同,为什么?答:在自由流动时,流体被壁面加热,形成自由流动边界层.层内的速度分布与受迫流动时不相同.流体温度在壁面上为最高,离开壁面后逐渐降到环境温度,即热边界层的外缘,在此处流动也停止,因此速度边界层和温度边界层的厚度相等,边界层内的速度分布为,在壁面上及边界层的外缘均等于零.因此在层内存在一个极大值(见图1).受迫流动时,一般说速度边界层和温度边界层的厚度不相等.边界层内的速度分布为壁面处为零,.而外缘处为u∞(见图2)。7、试讨论在无限空间自由流动紊流换热时对流换热强度与传热面尺寸的关系,并说明此关系有何使用价值。答:当在无限空间自由流动紊流换热时,换热面无论是竖壁、竖管、水平管或热面向上的水平板,它们的对流换热准则方程式Nu=C(Gr.Pr)n中的指数n都是1/3,因此方程等式两边的定型尺寸可以消去,表明自由流动紊流换热时,换热系数与传热面尺寸(定型尺寸)无关.利用这自动模化特征,在自由流动紊流换热实验研究中,可以采用较小尺寸的物体进行试验,只要求实验现象的GrPr值处于紊流范围。8、在对流温度差大小相同的条件下,在夏季和冬季,屋顶天花板内表面的对流放热系数是否相同?为什么?答:在夏季和冬季两种情况下,虽然它们的对流温差相同,但它们的内表面的对流放热系数却不一定相等。原因:在夏季tf<tw,在冬季tf>tw,即在夏季,温度较高的水平壁面在上,温度较低的空气在下,自然对流不易产生,因此放热系数较低.反之,在冬季,温度较低的水平壁面在上,而温度较高的空气在下,自然对流运动较强烈,因此,放热系数较高。二、定量计算主要包括:单管内强制对流换热;外掠单管及管束的强制对流换热;大空间自然对流换热;有限空间自然对流换热及上述几种传热方式的综合应用等。1、一套管式换热器,饱和蒸汽在内管中凝结,使内管外壁温度保持在100℃,初温为25℃,质量流量为0.8kg/s的水从套管换热器的环形空间中流过,换热器外壳绝热良好。环形夹层内管外径为40mm,外管内径为60mm,试确定把水加热到55℃时所需的套管长度,及管子出口截面处的局部热流密度。不考虑温差修正。解:本题为水在环形通道内强制对流换热问题,要确定的是管子长度,因而可先假定管长满足充分发展的要求.然后再校核。由定性温度℃,得水的物性参数W/(m.K),Pa.sJ/(kg.K),Pr=4.31当量直径水被加热假设换热达充分发展,W/(m2·K)换热量:W而所以:m因,故换热已充分发展,不考虑管长修正。2、某锅炉厂生产的220t/h锅炉的低温段管式空气预热器的设计参数为:顺排布置,s1=76mm,s2=57mm,管子外径d0=38mm,壁厚δ=1.5mm;空气横向冲刷管束,在空气平均温度为133℃时管间最大流速u1,max=6.03m/s,空气流动方向上的总管排数为44排。设管壁平均温度tw=165℃,求管束与空气间的对流换热系数。如将管束改为叉排,其余条件不变,对流换热系数增加多少?解:(1)计算Ref,max由定性温度tf=133℃查附录,得空气的物性值为λf=0.344W/(m·℃)νf=27.0×10-6m2/s,Prf=0.684由tw=165℃查得Prw=0.682。于是==8487(2)求顺排时的对流换热系数hf=0.27×84870.63×0.6840.38××1×1解得对流换热系数为hf=63.66W/(m2·℃)(3)求叉排时的对流换热系数代入数据得=0.35×84870.60×0.6840.38××1×1解得叉排时的对流换热系数为hf=66.64W/(m2·℃)3、水平放置的蒸汽管道,保温层外径do=583mm,壁温tw=48℃,周围空气温度t∞=23℃。试计算保温层外壁的对流散热量?解:定性温度=35.5℃据此查得空气的物性值为λm=0.0272W/(m·℃),vm=16.53X10-6m2/s,Prm=0.7判据(GrPr)m===4.03×108<109流动属于层流,查表得C=0.53、n=1/4。于是对流换热系数为=0.53×(4.03×108)1/4×=3.5W/(m2·℃)单位管长的对流散热量为ql=hπdo(tw-t∞)=3.5×3.14×0.583×(48-23)=160.2W/m4、温度分别为100℃和40℃、面积均为0.5×0.5m2的两竖壁,形成厚δ=15mm的竖直空气夹层。试计算通过空气夹层的自然对流换热量?解:(1)空气的物性值定性温度℃,据此,查附录得空气的物性值为λm=0.0296W/(m·℃),ρm=1.029kg/m3,μm=20.60×10-6kg/(m·s),βm==2.915×10-3K-1,Prm=0.694,由此,运动粘度为m2/s(2)等效导热系数λe因(GrδPr)m=1.003×104<2×105,流动属层流。努谢尔特准则为=0.197×(1.003×104)1/4×=1.335等效导热系数λe为λe=Numλm=1.335×0.0296=0.0395W/(m·℃)(3)自然对流换热量Φ==×(0.5×0.5)×(100-40)=39.5W5、用热线风速仪测定气流速度的试验中.将直径为0.1mm的电热丝与来流方向垂直放置,来流温度为25℃,电热丝温度为55℃,测得电加热功率为20W/m。假定除对流外其他热损失可忽略不计。试确定此时的来流速度。解本题为空气外掠圆柱体强制对流换热问题。由题意,=20W/m,由牛顿冷却公式W/(m2·K)定性温度:℃空气的物性值:,m2/s,由此得:假设Re数之值范围在40-4000,有:,其中C=0.683,n=0.466即:,得Re=233.12符合上述假设范围。故:m/s三、本章提要以下摘自赵镇南著,高等教育出版社,出版日期:2002年7月第1版《传热学》本章介绍了工程中最常见的几类对流换热问题的基本特征和换热计算关系式与计算方法,它们是掌握对流换热工程设计的基础。学习本章时,应注意掌握各种类型对流问题的流动特征,边界层的特点,流态的判别,换热机理及主要的影响因素,适用边界条件,已准则的适用范围,特征尺寸与定性温度的选取方法。1.管内强迫对流换热(1)流动状况不同于外部流动的情形,无论层流或者湍流都存在流动入口段和充分发展段,两者的长度差别很大。计算管内流动和换热时,速度必须取为截面平均速度。(2)换热状况管内热边界层也同样存在入口段和充分发展段,只有在流体的Pr数大致等于1的时候,两个边界层的入口段才重合。理解并准确把握两种典型边界条件(恒壁温与恒热流)下流体截面平均温度的沿程变化规律,对管内对流换热计算有着特殊重要的意义。(3)特征数方程式要注意区分不同关联式所针对的边界条件,因为层流对边界条件的敏感程度明显高于湍流时。还需要特别指出,绝大多数管内对流换热计算式5f对工程上的光滑管,如果遇到粗糙管,使用类比率关系式效果可能更好。(4)非圆截面管道仅湍流可以用当量直径的概念处理非圆截面管道的对流换热问题。层流时即使用当量直径的概念也无法将不同截面形状管道换热的计算式全部统一。2.绕流圆柱体的强迫对流换热流体绕圆柱体流动时,流动边界层与掠过平板时有很大的不同出现脱体流动和沿程局部Nu数发生大幅度升降变化的根本原因。横掠单根圆管的对流换热计算式还被扩展到非圆管的情形。3.绕流管束的强迫对流换热这是工程中用得最多的流体换热方式之—。它的流动和换热的基本特征与单管时相同,但增加了排列方式、管间距以及排数三个新的影响因素。除了光管管束以外,在气体外部绕流换热的场合,各种型式的肋片管柬在工程领域里用得越来越普遍。肋片的型式极多,已经公开发表的计算式不一定与实际使用的肋片管相同,选择计算公式时应注意这个问题。4.自然对流换热因温度差引起的自然对流边界层和强迫流动明显不一样,它具有单峰形状,这种速度分布是在密度差和流体粘性的共同作用下形成的。自然对流换热时速度场和温度场相互锅合,因此求解比强迫流动更困难些。自然对流换热计算中出现了一个新的已定特征数—Gr数。它是决定自然对流流动状态的基本因素。自然对流换热对物体的形状、朝向特别敏感,选取特征数方程时应给予足够的注意。极限情况下甚至可能转变成纯导热。近年在自然对流换热领域出现较多形式复杂、自变量覆盖面广的新特征数关联式,它们适应了计算机计算的需要。有限空间中的自然对流是流动和换热形态都相当复杂的—类情形,工程上经常简化为按“导热”的形式来处理,并由此引入当量导热系数的概念。混合对流换热只要壁面与流体之间存在温度差,自然对流的影响就不可能完全避免。这种情况F的流场和温度场也十分复杂。工程上一般采用突出主要因素、忽略次要因素的办法来处理这个问题。5.强化对流换热强化传热是对流换热原理付诸工程实际应用的主要着眼点,也是传热研究中永恒的主题。必须明确强化的重点或者突破口在哪里,然后再针对具体情况选择一种或几种强化措施。就一般原理而言,在对流换热表面传热系数增大的同时,阻力损失会以更大的比例增加。但是也不排除有的强化方法可以做到换热增强多而阻力变化很小。凝结与沸腾部分一、基本概念主要包括主要包括:凝结换热的基本特点、影响因素及其强化;沸腾换热的基本特点等。1、当蒸汽在竖壁上发生膜状凝结时,分析竖壁高度h对放热系数的影响。答:当蒸汽在竖壁上发生膜状凝结时,随着竖壁高度的不同可能发生层流凝结放热和紊流凝结放热。(A)对层流来说:,可见,当l增加时,放热系数h减小,h∝1/l1/4.从理论上分析,层流凝结放热总以导热方式为主.当l=0时,膜层厚度为0,这时的放热达到最大值,随着l的增加,膜层厚度δ也加厚,也即增加了导热热阻,所以放热系数随l增加而减小。(B)对紊流而言:平均换热系数,而Re与l也成正比,可见随着l增加,放热加强,从理论上分析,在紊流中紊流传递方