2018届中考数学复习专题四几何变换压轴题试题(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题四几何变换压轴题类型一图形的旋转变换几何图形的旋转变换是近年来中考中的常考点,多与三角形、四边形相结合.解决旋转变换问题,首先要明确旋转中心、旋转方向和旋转角,关键是找出旋转前后的对应点,利用旋转前后两图形全等等性质解题.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE,DF于点M,N,求证:MN=13AC;(2)如图2,将∠EDF以点D为旋转中心旋转,其两边DE′,DF′分别与直线AB,BC相交于点G,P.连接GP,当△DGP的面积等于33时,求旋转角的大小并指明旋转方向.【分析】(1)连接BD,由∠BAD=60°,得到△ABD为等边三角形,进而证明点E是AB的中点,再根据相似三角形的性质解答;(2)分∠EDF顺时针旋转和逆时针旋转两种情况,然后根据旋转的性质解题.1.(2017·潍坊)边长为6的等边△ABC中,点D,E分别在AC,BC边上,DE∥AB,EC=23.(1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图2,将△DEC绕点C旋转∠α(0°α360°),得到△D′E′C,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP,当AP最大时,求AD′的值.(结果保留根号)图1图22.(2016·成都)如图1,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连接BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图2,当点F落在AC上时(F不与C重合),若BC=4,tanC=3,求AE的长;②如图3,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.类型二图形的翻折变换几何图形的翻折变换也是近年来中考中的常考点,多与三角形、四边形相结合.翻折变换的实质是对称,翻折部分的两图形全等,找出对应边、对应角,再结合勾股定理、相似的性质与判定解题.(2016·苏州)如图,在△ABC中,AB=10,∠B=60°,点D,E分别在AB,BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为____.【分析】作DF⊥B′E于点F,B′G⊥AD于点G,由∠B=60°,BD=BE,得到△BDE是等边三角形,由对称的性质得到△B′DE也是等边三角形,从而GD=B′F,然后利用勾股定理求解.、3.(2017·安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或8033cm.图1图24.如图,在矩形ABCD中,点E在边CD上,将矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.类型三图形的相似图形的相似常以三角形、四边形为背景,与旋转、翻折、动点相结合,考查三角形相似的性质及判定,难度较大,是中考中常考的几何压轴题.与动点相关的相似三角形,要根据动点的运动情况讨论相似三角形的对应边、对应角,进而判定相似三角形,再利用相似三角形的性质解题.(2016·青岛)如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形;(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式.【分析】(1)根据勾股定理求出AC的值,然后分类讨论:当AP=PO时,求出t的值;当AP=AO时,求出t的值;(2)过点E作EH⊥AC于点H,过点Q作QM⊥AC于点M,过点D作DN⊥AC于点N,交QF于点G,分别用t表示出EH,DN,DG,再利用面积的和差计算即可.5.(2017·常德)如图,Rt△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于点M.求证:①GM=2MC;②AG2=AF·AC.图1图2参考答案【例1】(1)如图,连接BD,设BD交AC于点O,∵在菱形ABCD中,∠DAB=60°,AD=AB,∴△ABD为等边三角形.∵DE⊥AB,∴点E为AB的中点.∵AE∥CD,∴AMCM=AECD=12.同理CNAN=12.∴M,N是线段AC的三等分点,∴MN=13AC.(2)∵AB∥CD,∠BAD=60°,∴∠ADC=120°.∵∠ADE=∠CDF=30°,∴∠EDF=60°.当∠EDF顺时针旋转时,由旋转的性质知,∠EDG=∠FDP,∠GDP=∠EDF=60°.∵DE=DF=3,∠DEG=∠DFP=90°,∴△DEG≌△DFP,∴DG=DP,∴△DGP是等边三角形.则S△DGP=34DG2.由34DG2=33,又∵DG>0,解得DG=23.∴cos∠EDG=DEDG=323=12,∴∠EDG=60°.∴当顺时针旋转60°时,△DGP的面积是33.同理,当逆时针旋转60°时,△DGP的面积也是33.综上所述,当∠EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积是33.【变式训练】1.解:(1)当CC′=3时,四边形MCND′为菱形.理由:由平移的性质得CD∥C′D′,DE∥D′E′.∵△ABC为等边三角形,∴∠B=∠ACB=60°,∴∠ACC′=180°-60°=120°.∵CN是∠ACC′的角平分线,∴∠NCC′=60°.∵AB∥DE,DE∥D′E′,∴AB∥D′E′,∴∠D′E′C′=∠B=60°,∴∠D′E′C′=∠NCC′,∴D′E′∥CN.∴四边形MCND′为平行四边形.∵∠ME′C′=∠MCE′=60°,∠NCC′=∠NC′C=60°,∴△MCE′和△NCC′为等边三角形,故MC=CE′,NC=CC′.又E′C′=23,CC′=3,∴CE′=CC′=3,∴MC=CN,∴四边形MCND′为菱形.(2)①AD′=BE′.理由:当α≠180°时,由旋转的性质得∠ACD′=∠BCE′.由(1)知AC=BC,CD′=CE′,∴△ACD′≌△BCE′,∴AD′=BE′.当α=180°时,AD′=AC+CD′,BE′=BC+CE′,即AD′=BE′.综上可知,AD′=BE′.②连接CP,在△ACP中,由三角形三边关系得,APAC+CP,∴当A,C,P三点共线时AP最大,如图所示.此时,AP=AC+CP.在△D′CE′中,由P为D′E′中点,得AP⊥D′E′,PD′=3,∴CP=3,∴AP=6+3=9.在Rt△APD′中,由勾股定理得AD′=AP2+PD′2=92+(3)2=221.2.解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH.∵∠BHD=∠AHC=90°,DH=CH,∴△BHD≌△AHC,∴BD=AC.(2)①在Rt△AHC中,∵tanC=3,∴AHCH=3.设CH=x,则BH=AH=3x,∴BC=BH+CH=4x=4,∴x=1,∴AH=3,CH=1.由旋转的性质知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,EHAH=FHHC=1,∴△EHA∽△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3.如图,过点H作HP⊥AE于点P,则HP=3AP,AE=2AP.在Rt△AHP中,AP2+HP2=AH2,即AP2+(3AP)2=9.∴AP=31010,∴AE=3105.②由①知,△AEH和△FHC都为等腰三角形,设AH交CG于点Q,∴∠GAH=∠HCG,∴△AGQ∽△CHQ,∴AQCQ=GQHQ,∴AQGQ=CQHQ,∠AGQ=∠CHQ=90°.∵∠AQC=∠GQH,∴△AQC∽△GQH.又∵旋转角为30°,∴∠EHA=∠FHC=120°,∴∠QAG=30°,∴EFGH=ACGH=AQGQ=1sin30°=2.【例2】如图,作DF⊥B′E于点F,B′G⊥AD于点G,∵∠B=60°,BD=BE=4,∴△BDE是边长为4的等边三角形.∵将△BDE沿DE所在的直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2.∵B′D=4,∴B′G=B′D2-GD2=23.∵AB=10,∴AG=10-6=4,∴AB′=AG2+B′G2=27.故答案为27.【变式训练】3.40或80334.(1)证明:由折叠的性质知,DG=FG,ED=EF,∠AED=∠AEF,∵FG∥CD,∴∠FGE=∠AED,∴∠FGE=∠AEF,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形.(2)解:设DE=x,根据折叠的性质,EF=DE=x,EC=8-x,在Rt△EFC中,FC2+EC2=EF2,即42+(8-x)2=x2.解得x=5,CE=8-x=3.∴CEDE=35.【例3】(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10cm.①当AP=PO时,如图,过点P作PM⊥AO,∴AM=12AO=52.∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴APAC=AMAD,∴AP=t=258.②当AP=AO时,t=5.∵0<t<6,∴t=258或t=5均符合题意,∴当t=258或t=5时,△AOP是等腰三角形.(2)如图,过点E作EH⊥AC于点H,过点Q作QM⊥AC于点M,过点D作DN⊥AC于点N,交QF于点G,∵四边形ABCD是矩形,∴AD∥BC,∴∠PAO=∠ECO.∵点O是对角线AC的中点,∴AO=CO.又∵∠AOP=∠COE,∴△AOP≌△COE,∴CE=AP=t.∵△CEH∽△CAB,∴EHAB=CECA,∴EH=3t5.∵S△ADC=12AD·DC=12DN·AC,∴DN=AD·CDAC=245.∵QM∥DN,∴△CQM∽△CDN,∴QMDN=CQCD,即QM245=6-t6.∴QM=24-4t5,∴DG=245-24-4t5=4t5.∵FQ∥AC,∴△DFQ∽△DOC,∴FQOC=DQDC=DGDN,∴FQ=5t6,∴S=S△OEC+S△OCD-S△DFQ=12OC·EH+12OC·DN-12DG·FQ=-13t2+32t+12,即S与t的函数关系式为S=-13t2+32t+12.【变式训练】5.证明:(1)在Rt△ABE和Rt△DBE中,BA=BD,BE=BE,∴△ABE≌△DBE.(2)①如图,过点G作GH∥AD交BC于H,∵AG=BG,∴BH=DH.∵BD=4DC,设DC=1,则BD=4,∴BH=DH=2.∵GH∥AD,∴GMMC=HDDC=21,∴GM=2MC.②如图,过点C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴AGNC=GMMC.由①知GM=2MC,∴AG=2NC.∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°-∠BAE,∴△ACN∽△BAF,∴AFCN=ABAC.∵AB=2AG,∴AFCN=2AGAC,∴2CN·AG=AF·AC,∴AG2=AF·AC.

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功