13.1.2线段的垂直平分线性质(第一课时)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

八年级上册13.1.2线段的垂直平分线性质想一想:轴对称图形轴对称区别联系1、对两个图形而言2、指两个图形的相互关系3、只有一条对称轴1、对一个图形而言2、指一个图形的特殊形状3、至少有一条对称轴1、沿某条直线对折后,直线两旁的部分都能重合;2、若将成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;若把轴对称图形沿对称轴看成两个图形,那么这两个图形关于这条对称轴成轴对称.3.都有对称轴ACBA’B’C’NM思考:如图,△ABC与△A‘B’C‘关于直线MN对称,点A’,B’,C’分别为点ABC的对称点,线段AA‘,BB’,CC‘与直线MN有什么关系?P∠MPA=∠MPA’=90°AP=PA’对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线ACBA’B’C’NM如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线lA‘A轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线探索并证明线段垂直平分线的性质线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.8课堂练习练习1如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于______.ABCDE解:∵AD⊥BC,BD=DC,∴AD是BC的垂直平分线,∴AB=AC.∵点C在AE的垂直平分线上,∴AC=CE.课堂练习练习2如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB,AC,CE的长度有什么关系?AB+BD与DE有什么关系?ABCDE课堂练习练习2如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB,AC,CE的长度有什么关系?AB+BD与DE有什么关系?ABCDE解:∴AB=AC=CE.∵AB=CE,BD=DC,∴AB+BD=CD+CE.即AB+BD=DE.探索并证明线段垂直平分线的判定反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上呢?点P在线段AB的垂直平分线上.已知:如图,PA=PB.求证:点P在线段AB的垂直平分线上.PABC探索并证明线段垂直平分线的判定证明:过点P作线段AB的垂线PC,垂足为C.则∠PCA=∠PCB=90°.在Rt△PCA和Rt△PCB中,∵PA=PB,PC=PC,∴Rt△PCA≌Rt△PCB(HL).∴AC=BC.又PC⊥AB,∴点P在线段AB的垂直平分线上.PABC探索并证明线段垂直平分线的判定用数学符号表示为:∵PA=PB,∴点P在AB的垂直平分线上.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.PABC这些点能组成什么几何图形?探索并证明线段垂直平分线的判定你能再找一些到线段AB两端点的距离相等的点吗?能找到多少个到线段AB两端点距离相等的点?在线段AB的垂直平分线l上的点与A,B的距离都相等;反过来,与A,B的距离相等的点都在直线l上,所以直线l可以看成与两点A、B的距离相等的所有点的集合.PABC结论:线段垂直平分线上的点与这条线段两个端点的距离相等。反之,与线段两个端点的距离相等的点在这条线段垂直平分线上。所以,线段垂直平分线可以看作到线段两端的距离相等的所有点的集合。开启智慧解:∵AB=AC,∴点A在BC的垂直平分线.∵MB=MC,∵点M在BC的垂直平分线上,∴直线AM是线段BC的垂直平分线.课堂练习练习3如图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?ABCDM(1)为什么任意取一点K,使点K与点C在直线两旁?尺规作图如何用尺规作图的方法经过直线外一点作已知直线的垂线?12DE(2)为什么要以大于的长为半径作弧?(3)为什么直线CF就是所求作的垂线?CABDKFE课堂练习练习4如图,过点P画∠AOB两边的垂线,并和同桌交流你的作图过程.ABOP11.3角的平分线ODEABPC定理1在角的平分线上的点到这个角的两边的距离相等。定理2到一个角的两边的距离相等的点,在这个角的平分线上。角的平分线是到角的两边距离相等的所有点的集合12.1线段的垂直平分线定理线段垂直平分线上的点和这条线段两个端点的距离相等。逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合ABMNP点的集合是一条射线点的集合是一条直线

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功