2012年安徽省初中毕业学业考试数学一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2012安徽,1,4分)下面的数中,与-3的和为0的是………………………….()A.3B.-3C.31D.311.解析:根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3.解答:A.点评:本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.2.(2012安徽,2,4分)下面的几何体中,主(正)视图为三角形的是()A.B.C.D.2.解析:根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个靠着的矩形.解答:C.点评:此题是由立体图形到平面图形,熟悉常见几何体的三视图,如果要求画出几何体的三视图,要注意它们之间的尺寸大小,和虚实线.3.(2012安徽,3,4分)计算32)2(x的结果是()新课标第一网A.52xB.68xC.62xD.58x3.解析:根据积的乘方和幂的运算法则可得.解答:解:6323328)()2()2(xxx故选B.点评:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些都是易错的地方,要熟练掌握,关键是理解乘方运算的意义.4.(2012安徽,4,4分)下面的多项式中,能因式分解的是()A.nm2B.12mmC.nm2D.122mm4.解析:根据分解因式的方法,首先是提公因式,然后考虑用公式,如果项数较多,要分组分解,本题给出四个选项,问哪个可以分解,对照选项中的多项式,试用所学的方法分解.就能判断出只有D项可以.解答:解:22)1(12mmm故选D.点评:在进行因式分解时,首先是提公因式,然后考虑用公式,(两项考虑用平方差公式,三项用完全平方公式,当然符合公式才可以.)如果项数较多,要分组分解,最后一定要分解到每个因式不能再分为止.5.(2012安徽,5,4分)某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元5.解析:根据4月份比3月份减少10﹪,可得4月份产值是(1-10﹪)a,5月份比4月份增加15﹪,可得5月份产值是(1-10﹪)(1+15﹪)a,解答:A.点评:此类题目关键是弄清楚谁是“基准”,把“基准”看作“单位1”,在此基础上增加还是减少,就可以用这个基准量表示出来了.6.(2012安徽,6,4分)化简xxxx112的结果是()A.x+1B.x-1C.—xD.x6.解析:本题是分式的加法运算,分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减.解答:解:xxxxxxxxxxx1)1(11122故选D.点评:分式的一些知识可以类比着分数的知识学习,分式的基本性质是关键,掌握了分式的基本性质,可以利用它进行通分、约分,在进行分式运算时根据法则,一定要将结果化成最简分式.7.(2012安徽,7,4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.22aB.32aC.42aD.52a7.解析:图案中间的阴影部分是正方形,面积是a2,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a的正方形的一半,它的面积用对角线积的一半来计算.解答:解:222242121aaa故选A.点评:本题考查了正多边形的性质,关键要找出正八边形和原来正方形的关系,尽量用所给数据来计算.8.(2012安徽,8,4分)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为()A.61B.31C.21D.328.解析:第1个打电话给甲、乙、丙(因为次序是任意的)的可能性是相同的,所以第一个打电话给甲的概率是31.解答:故选B.9.(2012安徽,9,4分)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图像大致是()9.解析:利用AB与⊙O相切,△BAP是直角三角形,把直角三角形的直角边表示出来,从而用x表示出三角形的面积,根据函数解析式确定函数的图象.解答:解:∵AB与⊙O相切,∴∠BAP=90°,OP=x,AP=2-x,∠BPA=60°,所以AB=)2(3x,所以△APB的面积2)2(23xy,(0≤x≤2)故选D.点评:此类题目一般都是根据图形性质,用字母表示出这个变量,把运动变化的问题转化成静止的.再根据函数的性质解答.有时变化过程的有几种情况,注意它们的临界值.10.(2012安徽,10,4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.54C.10或54D.10或17210.解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的.解答:解:如下图,54)44()22(22,1054)44()32(22故选C.点评:在几何题没有给出图形时,有的同学会忽略掉其中一种情况,错选A或B;故解决本题最好先画出图形,运用数形结合和分类讨论的数学思想进行解答,避免出现漏解.二、填空题(本大题共4小题,每小题5分,满分20分)11.(2012安徽,11,5分)2011年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________.11.解析:科学记数法形式:a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于378000有6位,所以可以确定n=6﹣1=5,所以378000=3.78×105答案:3.78×10512.(2012安徽,12,5分)甲乙丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为362甲S,252乙S,162丙S,则数据波动最小的一组是___________________.12.解析:平均数是反映数据集中趋势的特征量,方差反映数据离散程度的特征量,由于平均数相等,方差越大,说明数据越离散,波动越大,方差越小,说明数据越集中,波动越小.丙组方差最小,波动最小.答案:丙组13.(2012安徽,13,5分)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_______________°.13.解析:根据同圆中同弧所对的圆周角是圆心角的一半,所以∠AOC=2∠D;又因为四边形OABC是平行四边形,所以∠B=∠AOC;圆内接四边形对角互补,∠B+∠D=180°,所以∠D=60°,连接OD,则OA=OD,OD=OC,∠OAD=∠ODA,∠OCD=∠ODC,即有∠OAD+∠OCD=60°.答案:60.点评:本题是以圆为背景的几何综合题,在圆内圆周角和圆心角之间的关系非常重要,经常会利用它们的关系来将角度转化,另外还考查了平行四边形对角相等,圆内接四边形对角互补,以及等腰三角形的性质.解决此类题目除了数学图形的性质,还要学会识图,做到数形结合.14.(2012安徽,14,5分)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4②S2+S4=S1+S3③若S3=2S1,则S4=2S2④若S1=S2,则P点在矩形的对角线上其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上).14.解析:过点P分别向AD、BC作垂线段,两个三角形的面积之和42SS等于矩形面积的一半,同理,过点P分别向AB、CD作垂线段,两个三角形的面积之和31SS等于矩形面积的一半.31SS=42SS,又因为21SS,则32SS=ABCDSSS2141,所以④一定成立答案:②④.点评:本题利用三角形的面积计算,能够得出②成立,要判断④成立,在这里充分利用所给条件,对等式进行变形.不要因为选出②,就认为找到答案了,对每个结论都要分析,当然感觉不一定对的,可以举反例即可.对于④这一选项容易漏选.三、(本大题共2小题,每小题8分,满分16分)15.(2012安徽,15,8分)计算:)2()1)(3(aaaa15.解析:根据整式的乘法法则,多项式乘多项式时,用其中一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;单项式乘多项式,可以按照乘法分配率进行.最后再根据合并同类项法则进行整式加减运算.解:原式=a2-a+3a-3+a2-2a=2a2-316.(2012安徽,16,8分)解方程:1222xxx16.解析:根据一元二次方程方程的几种解法,本题不能直接开平方,也不可用因式分解法.先将方程整理一下,可以考虑用配方法或公式法.解:原方程化为:x2-4x=1配方,得x2-4x+4=1+4整理,得(x-2)2=5∴x-2=5,即521x,522x.四、(本大题共2小题,每小题8分,满分16分)17.(2012安徽,17,8分)在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,(1)当m、n互质(m、n除1外无其他公因数)时,观察下列图形并完成下表:mnmnf123213432354247357猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式是______________________________(不需要证明);解:(2)当m、n不互质时,请画图验证你猜想的关系式是否依然成立,17:解析:(1)通过题中所给网格图形,先计算出2×5,3×4,对角线所穿过的小正方形个数f,再对照表中数值归纳f与m、n的关系式.(2)根据题意,画出当m、n不互质时,结论不成立的反例即可.解:(1)如表:f=m+n-1(2)当m、n不互质时,上述结论不成立,如图2×42×418.(2012安徽,18,8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.解:mnmnf1232134323542476357618.解析:(1)考查全等变化,可以通过平移、旋转、轴对称等来完成;(2)先作出图形,因为要回答旋转角度,利用方格纸算出AB、AD、BD的长度,再计算角度.解:(1)答案不唯一,如图,平移即可(2)作图如上,∵AB=10,AD=10,BD=52∴AB2+AD2=BD2∴△ABD是直角三角形,AD可以看作由AB绕A点逆时针旋转90°得到的.点评:图形变换有两种,全等变换和相似变换,掌握每种变换的概念、性质是作图的基础,一般难度不大.五、(本大题共2小题,每小题10分,满分20分)19.(2012安徽,19,10分)如图,在△ABC中,∠A=30°,∠B=45°,AC=32,求AB的长.解析:本题在一个三角形中已知两个角和一边,求三角形的边.