五年级奥数集训专题讲座(七)——包含与排除包含与排除问题其实也叫容斥问题。即当两个计数部分有重复包含时,为了不重复的计数,应从他们的和中排除重复部分。如:集合A加集合B组成一个新的集合C,再计算C的元素时为:C=A+B-ABAABB(韦恩图)例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。又问:‘谁做完数学作业?请举手!”有42人举手。最后问:“谁语文、数学作业没有做完?”没有人举手。求这个班语文、数学作业都完成的人数。【思路导航】如图所示,完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79(人),多于全班人数,这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。所以,这个班语文、数学作业都完成的有:79-48=31(人)37+42-48=31(人)答:语文、数学作业都完成的有31人。想一想:下面算式有何道理?(l)37-(48-42)=31(人)(2)42-(48-37)=31(人)【疯狂操练】:(1)五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。其中语文成绩优秀的有65人,数学优秀的有87人。语文、数学都优秀的有多少人?解:语文成绩优秀的有65人,数学优秀的有87人,那么总人数是:65+87=152(人)其中有一部分是语文数都优秀的,所以语文数学都优秀的有:152-122=30(人)答:语文数学都优秀的有30人。(2)四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?解:根据两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,可知只订了《数学大世界》的有:54-45=9(人),而两种读物都订了的有13人,所以订了《数学大世界》的有:13+9=22(人)答:订《数学大世界》的有22人。(3)学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。这个文艺组一共有多少人?解:24+17-8=33(人)答:这个文艺组一共有33人。例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的人有23人,两题都答对的有15人。问多少个同学两题都答得不对?【思路导航】如图所示,已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10(人)。又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数10+23=33(人)。所以,两题都答得不对的有36-33=3(人)。36-[(25-15)+23]=3(人)想一想:下面算式有何道理。(l)36-[(23-15)+25]=3(人)(2)36-[(25-15)+(23-15)+15]=3(人)【疯狂操练】:(l)五(1)班有40个学生,其中有25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。那么,有多少人两个小组都没有参加?解:19人两个小组都参加则只参加数学小组为25-19=6人,只参加航模小组为23-19=4人所以参加小组活动的为4+6+19=29人,两个小组都没参加的为40-29=11人(2)一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。两种报纸都没有订阅的有多少人?解:订《小学生数学报》的32人,订《中国少年报》的29人,两种报纸都订的有25人,实际上订阅的总人数是:29+32-25=36人,那么两种报纸都没订的有55-36=19人。答:两种报纸都没订的有19人。(3)某校选出50名学生参加区作文比赛和数学比赛,结果3人两项比赛都获奖了,有27人两项比赛都没有获奖,已知作文比赛获奖的有14人,问数学比赛获奖的有多少人?解:只获作文比赛奖的14-3=11人,只获数学比赛奖的12-3=9人。获奖人数一共有11+9+3=23人,没获奖的就有50-23=27人。例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?【思路导航】:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数56-25=31(人),再求两科竞赛同时参加的人数:28+27-31=24(人)。28+27-(56-25)=24(人)答:同时参加语文、数学两科竞赛的有24人。想一想:下面算式有何道理(l)28-(56-25-27)=24(人)(2)27-(56-25-28)=24(人)【疯狂操练】:(1)一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人,两样都会的有多少人?解:因为除了两样都不会的4人,有36-4=32人,这32人分为会英语的,会法语的,两样都会的,而会英语和会法语中包括两样都会的所以就是:24+18=42(人)比32人多的人数就是两样都会的人数,即42-32=10(人)。综合列式:24+18-﹙36-4﹚=10(人)答:两样都会的有10人.(2)一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的52人,这两种棋都不会下的有12人。问这两种棋都会下的有多少人?解:解法同上题:即:69+52-﹙103-12﹚=30(人)答:这两种棋都会下的有30人.(3)三年级一班参加合唱队的有40人,参加舞蹈队的有20人,既参加合唱队又参加舞蹈队的有14人。这两队都没有参加的有10人。请算一算,这个班共有多少人?解:参加合唱队的有40人,参加舞蹈队的有20人,那么共40+20=60人,其中14个两个队都参加了,所以只有:60-14=46人,再加上两个队都没参加的,一共有46+10=56人。即:40+20-14+10=56(人)答:这个班共有56人例4:光明小学举办学生书法展览。学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法共有多少幅?【思路导航】由题意知,24幅作品是一、二、三、四、五、六年级参展作品的总数;22幅作品是一、二、三、四、五年级参展作品的总数。24+22=46〔幅),这是一个五、六年级和两个一、二、三、四年级参展的作品数,从其中去掉五、六年级的共参展的10幅即得到两个一、二、三、四年级参展作品的总数.再除以2,即可求出其它年级参展的作品。(24+22-10)÷2=18(幅)答:其他年级参展的作品共有18幅。练一练(l)科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有110件不是一年级的,有100件不是二年级的,一、二年级参展的作品共有32件。其他年级参展的作品共有多少件?解:由“有110件不是一年级的,有100件不是二年级的”可知二年级比一年级多10件,根据“一、二年级参展的作品共有32件”可得一年级展出科技作品数是(32-10)÷2=11件,则二年级展出作品数是32-11=21件,全校展出作品总数为:11+110=121件或:21+100=121件。那么除了一二年级的展出作品数外,其它年级展出作品数为:121-32=89件。答:其他年级参展的作品共有89件.(2)六(1)儿童节那天,学校的画廊里展出了每个年级学生的图画作品,其中有25幅画不是三年级的,有19幅画不是四年级的,三、四年级参展的画共有8幅,其他年级参展的画共有多少幅?解:25幅画不是三年级的,19幅画不是四年级的,那么四年级展出的图画作品比三年级多25-18=6幅.由于三四年级共有8幅,所以三年级的作品有(8-6)÷2=1幅。那么四年级的有8-1=7幅。则展出作品总数为:1+25=26,或7+19=26幅,那么其它年级展出作品数为26-8=18幅。答:其他年级参展的画共有18幅。(3)实验小学举办学生书法展。学校的橱窗里展出每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅。一、二年级参展的作品总数比三、四年级参展作品的总数少4幅。一、二年级参展的书法作品共有多少幅?解:28幅不是五年级的,也就是六年级+其他年级=28幅;24幅不是六年级的。也就是五年级+其他年级=24幅;上述两个式子相加得:(五年级+六年级)+2×其他年级=28+24,因此其他年级的有:(28+24-20)÷2=16幅,又因为一、二年级参展的作品总数比三、四年级参展的作品总数少4幅,因此一、二年级参展的书法作品共有:(16-4)÷2=6幅。