人教版八年级数学第17章《勾股定理》测试题姓名:成绩:一、选择题(本大题10小题,每小题3分,共30分。)1.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶3∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有()A.1个B.2个C.3个D.4个2.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.43.已知a,b,c是三角形的三边长,如果满足(a-6)2+b-8+||c-10=0,那么下列说法中不正确的是()A.这个三角形是直角三角形B.这个三角形的最长边长是10C.这个三角形的面积是48D.这个三角形的最长边上的高是4.84.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A.12mB.13mC.16mD.17m5.如图是一张探宝图,根据图中的尺寸,起点A与起点B的距离是()A.113B.8C.9D.106.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°7.如图,已知等腰直角三角形ABC的各顶点分别在直线l1,l2,l3上,且l1∥l2∥l3,l1,l2间的距离为1,l2,l3间的距离为3,则AB的长度为()A.22B.32C.42D.528.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.53B.52C.4D.59.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线AC上的D′处.若AB=3,AD=4,则ED的长为()A.32B.3C.1D.4310.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4.若用x,y表示直角三角形的两直角边长(xy),下列四个说法:①x2+y2=49;②x-y=2;③2xy+4=49;④x+y=9.其中正确的说法是()A.①②B.①②③C.①②④D.①②③④二、填空题(每题4分,共24分)11、三角形的三边长为,且满足,则这个三角形是.12、在△ABC中,三边长分别为8、15、17,那么△ABC的面积为.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.14.如图,数轴上点A所表示的实数是.15.如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF,△BCG,△CDH,△DAE是四个全等的直角三角形,若EF=2,DE=8,则AB的长为.16.如图,在长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB=.三、解答题(共66分)17.(8分)如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上,请按要求完成下列各题:(1)线段AB的长为,BC的长为,CD的长为;(2)连接AC,通过计算说明△ACD和△ABC各是什么特殊三角形.18.(8分)印度数学家什迦逻(1141~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.19.(10分)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?(73.13)20.(10分)如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.若草皮的价格为200元/m2,问学校需要投入多少资金购买草皮?21.(9分)如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,CD=PC=2,CD⊥CP,求∠BPC的度数.22.(9分)已知,如图,折叠长方形(四个角都是直角,对边相等)的一边AD使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.23.(12分)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.人教版八年级数学第17章《勾股定理》单元提优测试题参考答案姓名成绩一、选择题(本大题10小题,每小题4分,共40分。每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号12345678910答案CCCDDCDCAB1.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶3∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有(C)A.1个B.2个C.3个D.4个2.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C)A.0.7米B.1.5米C.2.2米D.2.4米第2题图第4题图第5题图第6题图3.已知a,b,c是三角形的三边长,如果满足(a-6)2+b-8+c-10=0,那么下列说法中不正确的是(C)A.这个三角形是直角三角形B.这个三角形的最长边长是10C.这个三角形的面积是48D.这个三角形的最长边上的高是4.84.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12mB.13mC.16mD.17m5.如图是一张探宝图,根据图中的尺寸,起点A与起点B的距离是(D)A.113B.8C.9D.106.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为(C)A.50°B.60°C.70°D.80°7.如图,已知等腰直角三角形ABC的各顶点分别在直线l1,l2,l3上,且l1∥l2∥l3,l1,l2间的距离为1,l2,l3间的距离为3,则AB的长度为(D)A.22B.32C.42D.52第7题图第8题图第9题图第10题图8.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为(C)A.53B.52C.4D.59.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线AC上的D′处.若AB=3,AD=4,则ED的长为(A)A.32B.3C.1D.4310.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4.若用x,y表示直角三角形的两直角边长(xy),下列四个说法:①x2+y2=49;②x-y=2;③2xy+4=49;④x+y=9.其中正确的说法是(B)A.①②B.①②③C.①②④D.①②③④二、填空题(每题5分,共20分)11.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7≤h≤16.第11题图第12题图12.如图,数轴上点A所表示的实数是5-1.13.如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF,△BCG,△CDH,△DAE是四个全等的直角三角形,若EF=2,DE=8,则AB的长为10.图1图2第13题图14.如图,在长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB=6.三、解答题(共90分)15.(8分)如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上,请按要求完成下列各题:(1)线段AB的长为5,BC的长为5,CD的长为22;(2)连接AC,通过计算说明△ACD和△ABC各是什么特殊三角形.解:∵AC=22+42=25,AD=22+42=25,∴AC=AD,∴△ACD是等腰三角形.∵AB2+AC2=(5)2+(25)2=5+20=25=BC2,∴△ABC是直角三角形.16.(8分)印度数学家什迦逻(1141~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.解:如图,由题意可知AC=0.5,AB=2,OB=OC.设OA=x,则OB=OA+AC=x+0.5.在Rt△OAB中,OA2+AB2=OB2,∴x2+22=(x+0.5)2.解得x=3.75.∴水深3.75尺.17.(10分)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?解:在Rt△APO中,∠APO=60°,则∠PAO=30°.∴AP=2OP=200m,AO=AP2-OP2=2002-1002=1003(m).在Rt△BOP中,∠BPO=45°,则BO=OP=100m.∴AB=AO-BO=1003-100≈73(m).∴从A到B小车行驶的速度为73÷3≈24.3(m/s)=87.48km/h80km/h.∴此车超过每小时80千米的限制速度.18.(10分)有一块空白地,如图,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC=24m.试求这块空白地的面积.解:连接AC.∵∠ADC=90°,∴△ADC是直角三角形.∴AD2+CD2=AC2,即82+62=AC2,解得AC=10.又∵AC2+CB2=102+242=262=AB2,∴△ACB是直角三角形,∠ACB=90°∴S四边形ABCD=SRt△ACB-SRt△ACD=12×10×24-12×6×8=96(m2).故这块空白地的面积为96m2.19.(10分)如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.若草皮的价格为200元/m2,问学校需要投入多少资金购买草皮?解:连接BD.(1分)∵∠A=90°,AB=3m,AD=4m,∴在Rt△ABD中,由勾股定理得BD2=AB2+AD2=32+42