戴氏教育达州西外校区名校冲刺戴氏教育温馨提醒:暑假两个月是学习的最好时机,可以在两个月里,复习旧知识,学习新知识,承上,还能启下。在这个炎热的假期,祝你学习轻松愉快。初一典型几何证明题1、已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=22、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴△BCF≌△ABCDEF21ADBC∴BF=EF,∠CBF=∠DEF连接BE在△BEF中,BF=EF∴∠EBF=∠BEF。∵∠ABC=∠AED。∴∠ABE=∠AEB。∴AB=AE。在△ABF和△AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△AEF。∴∠BAF=∠EAF(∠1=∠2)。3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC4、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CBACDF21EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD(SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。在BC上截取BF=AB,连接EF∵BE平分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB//CD∴∠A+∠D=180o∵∠BFE+∠CFE=180o∴∠D=∠CFE又∵∠DCE=∠FCECE平分∠BCDCE=CE∴⊿DCE≌⊿FCE(AAS)∴CD=CF∴BC=BF+CF=AB+CD7.P是∠BAC平分线AD上一点,ACAB,求证:PC-PBAC-AB在AC上取点E,使AE=AB。∵AE=ABAP=AP∠EAP=∠BAE,∴△EAP≌△BAP∴PE=PB。PC<EC+PE∴PC<(AC-AE)+PB∴PC-PB<AC-AB。8.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE证明:在AC上取一点D,使得角DBC=角C∵∠ABC=3∠C∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;∵∠ADB=∠C+∠DBC=2∠C;∴AB=ADPDACB∴AC–AB=AC-AD=CD=BD在等腰三角形ABD中,AE是角BAD的角平分线,∴AE垂直BD∵BE⊥AE∴点E一定在直线BD上,在等腰三角形ABD中,AB=AD,AE垂直BD∴点E也是BD的中点∴BD=2BE∵BD=CD=AC-AB∴AC-AB=2BE9.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.解:延长AD至BC于点E,∵BD=DC∴△BDC是等腰三角形∴∠DBC=∠DCB又∵∠1=∠2∴∠DBC+∠1=∠DCB+∠2即∠ABC=∠ACB∴△ABC是等腰三角形∴AB=AC在△ABD和△ACD中AB=AC∠1=∠2BD=DC∴△ABD和△ACD是全等三角形(边角边)∴∠BAD=∠CAD∴AE是△ABC的中垂线∴AE⊥BC∴AD⊥BC10.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA证明:∵OM平分∠POQ∴∠POM=∠QOM∵MA⊥OP,MB⊥OQ∴∠MAO=∠MBO=90∵OM=OM∴△AOM≌△BOM(AAS)∴OA=OB∵ON=ON∴△AON≌△BON(SAS)∴∠OAB=∠OBA,∠ONA=∠ONB∵∠ONA+∠ONB=180∴∠ONA=∠ONB=90∴OM⊥AB11.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.证明:在AB上取F,使AF=AD,连接EF∵AE平分∠DAB∴∠DAE=∠FAE在⊿ADE和⊿AFE中AD=AF∠DAE=∠FAEAE=AE∴⊿ADE≌⊿AFE(SAS)∴∠ADE=∠AFE∵AB//CD∴∠ADE+∠C=180o∵∠AFE+∠BFE=180o∴∠C=∠BFE∵BE平分∠ABC∠CBE=∠FBE在⊿BFE和⊿BCE中∠C=∠BFE∠CBE=∠FBECE=CE∴⊿BFE≌⊿BCE(AAS)∴CB=BF∴AB=AF+FB=AD+BC12.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MFPEDCBA(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.(1)证:∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL)∴DE=BF.在△DEM和△BFM中∠DEM=∠BFM∠DME=∠BMFDE=BF∴△DEM≌△BFM(AAS)∴MB=MD,ME=MF(2)证:∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL)∴DE=BF.在△DEM和△BFM中∠DEM=∠BFM∠DME=∠BMFDE=BF∴△DEM≌△BFM(AAS)∴MB=MD,ME=MF13如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.证:∵∠CEB=∠CAB=90°FEDCBA∠ADB=∠CDE在△ABD中,∠ABD=180°-∠CAB-∠ADB在△CED中,∠DCE=180°-∠CEB-∠CDE∴∠ABD=∠DCE在△ABD和△ACF中∠DAB=∠CAFAB=AC∠ABD=∠DCF∴△ABD≌△ACF(ASA)∴BD=CF∵BD是∠ABC的平分线∴∠FBE=∠CBE在△FBE和△CBE中∠FBE=∠CBEBE=BE∠BEF=∠BEC∴△FBE≌△CBE(ASA)∴CE=FECF=2CE∴BD=2CE14.如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。证明:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵AD=BC,∠D=∠C,DE=CF∴△AED≌△BFC(SAS)15.如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。求证:AM是△ABC的中线。证明:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴BM=CM∴AM是△ABC的中线16.AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF证:在△ABD与△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD(SSS)∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD(SAS)∴BF=FC17.如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。证:∵CF=CE+EFEB=EF+FB又∵CE=FB∴CF=EB在△CDF与△ABE中AB=CDAE=DFBE=CF∴△CDF≌△ABE(SSS)∴∠DCB=∠ABF在△ABF与△CDE中AB=CD∠ABF=∠DCEBF=CE∴△ABF≌△CDE(SAS)∴AF=ED18.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上.证明:连接EF∵AB∥CD∴∠B=∠C∵M是BC中点∴BM=CM在△BEM和△CFM中BE=CF∠B=∠C∴△BEM≌△CFM(SAS)∴CF=BEBM=CM19.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证:AE=AF。证:连接AC∵在△ADC和△ABC中AD=ABDC=BCAC=AC∴△ADC≌△ABC(SSS)∴∠B=∠D∵E、F分别是DC、BC的中点又∵BC=DC∴DE=BF∵在△ADE和△ABF中AD=AB∠D=∠BDE=BF∴△ADE≌△ABF(SAS)∴AE=AF20.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证:∠5=∠6.证明:∵在△ADC和△ABC中∠BAC=∠DACDBCcAFE∠BCA=∠DCAAC=AC∴△ADC≌△ABC(AAS)∵AB=AD,BC=CD在△DEC与△BEC中CE=CE∠BCA=∠DCA∴△DEC≌△BEC(SAS)∴∠DEC=∠BECBC=CD21.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。求证:DE=DF.证明:∵AD是∠BAC的平分线∴∠EAD=∠FAD∵DE⊥AB,DF⊥AC∴∠BFD=∠CFD=90°∴∠AED与∠AFD=90°在△AED与△AFD中∠EAD=∠FADAD=AD∠AED=∠AFD∴△AED≌△AFD(AAS)∴AE=AF22.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。求证:MB=MC证明:∵AB=AC∴∠B=∠C∵ME⊥AB,MF⊥AC∴∠BEM=∠CFM=90°在△BME和△CMF中∵∠B=∠C∠BEM=∠CFM=90°ME=MF∴△BME≌△CMF(AAS)∴MB=MC.23.在△ABC中,90ACB,BCAC,直线MN经过点C,且MNAD于D,MNBE于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①ADC≌CEB;②BEADDE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.AEBDCF∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE24.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC