TiO2光催化降解有机污染物的研究

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

TiO2光催化降解有机污染物的研究西安交通大学能源与动力工程学院环境工程系赵景联国家自然科学基金(20377034)主要内容123TiO2光催化技术简介本研究小组工作进展结论与展望1.TiO2光催化技术简介1.1TiO2光催化背景介绍1.2TiO2光催化的基本原理1.3TiO2光催化技术的特点1.4提高TiO2光催化效率的主要途径1.5TiO2光催化降解有机污染物研究进展1.1TiO2光催化背景介绍什么是光催化?概括说来,就是光触媒(催化材料)在外界可见光的作用下发生催化作用。光催化一般是多种相态之间的催化反应。光触媒在光照条件(可以是不同波长的光照)下所起到催化作用的化学反应,统称为光反应。光合作用也可以看作光催化起源A.1972年Fujishima和Honda在n-型半导体TiO电极上发现了水的光催化分解作用,揭开了光催化技术研究的序幕。FujishimaA,HondaK.Nature,1972,238:37~38B.1976年Garey用TiO2光催化剂脱除了多氯联苯中的氯,1977年Frank光催化氧化CN-为OCN-,光催化技术在环保方面的应用研究开始启动。C.近十几年来,半导体光催化技术在环保、制氢、卫生保健等方面的应用研究发展迅速,纳米光催化成为国际上最活跃的研究领域之一。hEg+-ConductionbandAadsAreducedAbandgapValencebandDadsDDoxidizedsemiconductorparticleOverallreaction:D+AhPCDoxidized+Areduced1.2TiO2光催化机理示意图++ABCDAA-DD+hvhvCBVB表面复合体内复合光催化氧化降解污染物的过程a.TiO2吸收紫外光激发b.活性自由基的产生c.有机物的降解TiO2吸收紫外光激发heTiOvbcb2-hvOHTiOHTihvbⅣⅣOHTiOHTiecbⅢⅣ-OHTiOHTiecbⅣⅣ-OHTiOHTihvbⅣⅢ活性自由基的产生hvb++OH-→·OHhvb++H2O→·OH+H+hvb++Red→·Red+ecb-+O2(ads)→·O2(ads)-·O2(ads)-+H+→·HO22·HO2→H2O2+O2H2O2+ecb-→·OH+OH-无机物有机污染物OHCOO22TiO22有机污染物降解光催化的技术特征(1)低温深度反应:光催化氧化可在室温下将水、空气和土壤中有机污染物完全氧化成无毒无害的物质。而传统的高温焚烧技术则需要在极高的温度下才可将污染物摧毁,即使用常规的催化氧化方法亦需要几百度的高温。(2)净化彻底:它直接将空气中的有机污染物,完全氧化成无毒无害的物质,不留任何二次污染,目前广泛采用的活性炭吸附法不分解污染物,只是将污染源转移。(3)绿色能源:光催化可利用太阳光作为能源来活化光催化剂,驱动氧化—还原反应,而且光催化剂在反应过程中并不消耗。从能源角度而言,这一特征使光催化技术更具魅力。(4)氧化性强:大量研究表明,半导体光催化具有氧化性强的特点,对臭氧难以氧化的某些有机物如三氯甲烷、四氯化炭、六氯苯、都能有效地加以分解,所以对难以降解的有机物具有特别意义,光催化的有效氧化剂是羟基自由基(HO),HO的氧化性高于常见的臭氧、双氧水、高锰酸钾、次氯酸等。(5)广谱性:光催化对从烃到羧酸的种类众多有机物都有效,美国环保署公布的九大类114种污染物均被证实可通过光催化得到治理,即使对原子有机物如卤代烃、染料、含氮有机物、有机磷杀虫剂也有很好的去除效果,一般经过持续反应可达到完全净化。(6)寿命长:理论上,催化剂的寿命是无限长的。1.2TiO2光催化技术的特点优点能彻底破坏有机污染物,不存在二次污染问题不需要大量消耗光能以外的其它物质,能耗和材料消耗低可在常温常压下进行反应,条件温和问题催化剂TiO2的分离问题提高TiO2的光催化效率扩展TiO2可利用的光谱范围光触媒(光催化剂)光触媒[PHOTOCATALYSIS]是光[Photo=Light]+触媒(催化剂)[catalyst]的合成词。光触媒是一种在光的照射下,自身不起变化,却可以促进化学反应的物质,光触媒是利用自然界存在的光能转换成为化学反应所需的能量,来产生催化作用,使周围之氧气及水分子激发成极具氧化力的OH-及O2-自由负离子。几乎可分解所有对人体和环境有害的有机物质及部分无机物质,不仅能加速反应,亦能运用自然界的定侓,不造成资源浪费与附加污染形成。光触媒于1967年被当时还是东京大学研究生的藤岛昭教授发现。在一次试验中对放入水中的氧化钛单结晶进行了光线照射,结果发现水被分解成了氧和氢。这一效果作为“本多·藤岛效果”(Honda-FujishimaEffect)而闻名于世,该名称组合了藤岛教授和当时他的指导教师----东京工艺大学校长本多健一的名字。由于是借助光的力量促进氧化分解反应,因此后来将这一现象中的氧化钛称作光触媒。这种现象相当于将光能转变为化学能。常见光催化材料的Ebg(eV)PhotocatalystEbg(eV)PhotocatalystEbg(eV)Si1.1ZnO3.2TiO2(Rutile)3.0TiO2(Anatase)3.2WO32.7CdS2.4ZnS3.7SrTiO33.4SnO33.5WSe31.2Fe2O32.2a-Fe2O33.1GaAs(n,p)0-0.5-1.0-1.5+0.5+1.0+1.5+2.0+2.5+3.0+3.5+4.0CdS(n)ZnO(n)WO3(n)SnO2(n)TiO2(n)△E=1.4eV2.5eV3.2eV3.2eV3.8eV3.2eV--2H+/H20-1.0+1.0+2.0+3.0+4.0--Cl2/2Cl-(1.40eV)--O3/O2+H2O(2.07)--F2/2F-(2.87)(NHE)有代表性的光催化半导体材料及其能带理想的光催化剂稳定,廉价,无毒高的光催化活性半导体能带间隙应大于2.8eV由于OH-•OH+e-的氧化还原电位E0=-2.8eVWhyTiO2?金属硫化物在水溶液中不稳定,会发生阳极光腐蚀,且有毒!hvCdS+h+→Cd2++S(直接光腐蚀)CdS+O2Cd2++SO42-(间接光腐蚀)CdS+4•OH+4h+Cd2++SO42-+4H+hv铁的氧化物会发生阴极光腐蚀ZnO在水中不稳定,会在粒子表面生成Zn(OH)2Ebg=3.2eV2.8eV稳定,化学惰性,价格低廉,容易再生和回收利用。通过染料修饰,搀杂,粒子改性,以及贵金属的表面修饰可以很容易改变其光的吸收行为。TiO2二氧化钛晶体的基本物性形态相对密度晶格类型晶格常数Ti-O距离/nm禁带宽度/eVac锐钛矿3.84正方晶系5.279.370.1953.2金红石4.22正方晶系9.055.80.1993板钛矿4.13斜方晶系TiOTiO6锐钛矿相和金红石相二氧化钛的能带结构CB/e-VB/h+CB/e-VB/h+3.2eV3.0eV0.2eV两者的价带位置相同,光生空穴具有相同的氧化能力;但锐钛矿相导带的电位更负,光生电子还原能力更强混晶效应:锐钛矿相与金红石相混晶具有更高光催化活性,这是因为在混晶氧化钛中,锐钛矿表面形成金红石薄层,这种包覆型复合结构能有效地提高电子-空穴对的分离效率锐钛矿相金红石相制备方法优点不足溶胶-凝胶法(sol-gel)粒径小,分布窄,晶型为锐钛矿型,纯度高,热稳定性好前驱体为钛醇盐,成本高水热合成法晶粒完整,粒径小,分布均匀,原料要求不高,成本相对较低反应条件为高温、高压,材质要求高化学气相沉积法(CVD)粒径小,分散性好,分布窄,化学活性高,可连续生产技术和材质要求高,工艺复杂,投资大微乳液法可有效控制TiO2纳米粉末的尺寸易团聚粉体纳米TiO2光催化剂的制备WhyVisibleLight?TiO2只能吸收不到5%的太阳光(紫外部分)!光催化剂的纳米尺寸效应量子效应当半导体粒径小于某一纳米尺寸时,导带和价带间的能隙变宽,光生电子和空穴的能量增加,氧化还原能力增强表面积效应随着粒子尺寸减小到纳米级,光催化剂的比表面积大大增加,对底物的吸附能力增强载流子扩散效应粒径越小,光生电子从晶体内扩散到表面的时间越短,电子和空穴的复合几率减小,光催化效率提高1.3提高TiO2光催化效率的主要途径优化反应工艺条件TiO2半导体光催化剂的改性和配伍尺度改变表面贵金属沉积过渡金属/非金属掺杂复合半导体光敏化外场与光催化协同反应电场微波场超声场磁场外流与光催化协同反应H2O2O3◆优化反应工艺条件目前,对于太阳能Ti02多相光催化反应工艺条件的研究最为广泛和深入。大量的实验己经证明,对于在任何一种体系中的反应,催化剂TiO2的晶形、晶相、用量、固定化方式,有机物的初始处理浓度、溶液的pH,溶液中的含氧量、反应温度、光源的分布、反应器结构形式等对于降解反应有着明显的影响,实验己经获取了一些定性或定量的结果。具有代表性的有:Ti02的锐钛矿相具有较高的催化活性;太阳Ti02多相光催化反应速率通常随着Ti02催化剂量的增加而增加,但是达到一定的值后,由于催化剂之间的掩蔽效应等影响,反应效率反而会下降,因此在大多数光催化反应系统中Ti02催化剂的添加量通常有一最佳值:Ti02催化剂的固定化有助于Ti02颗粒的分离与回收;光催化反应普遍遵循LarynuirHinshelwood模型:反应动力学常数k0与入射光的辐射量(Fe)、反应器的A/V值(光照面积与反应体积比)、催化剂(Cat)的特性等有一定的关系;pH的改变可以促进Ti02催化剂表而带电状况的改变,其中,pH3.5时TiO2带正电;pH6.4时Ti02带负电。而Ti02催化剂表而带电状况对有机物的吸附与光催化分解至关重要,因此不同的有机物降解体系有着不同的最佳pH;溶液中的含氧量既影响反应的速率,又影响降解产物的分布;光催化反应一般受温度的影响不大;有效的设计光催化反应器,提高光源的利用率可以得到最佳的光催化反应效率。◆TiO2半导体光催化剂的改性和配伍尺度改变-Ti02催化剂的尺寸量子化效应(QSE)纳米半导体吸收带边位移量可以用Brus公式描述:式中,me为电子质量,mb为空穴质量,R为微粒半径,h为普朗克常数,ε为介电常数,ERT为有效里德堡常量。式中,由于导致能量升高的束缚能远远大于使能量降低的库仑项,所以,粒子越小,激发态能就越大。当微粒的粒径小到纳米尺度时,电子能级由连续能级变为分立能级,吸收光波长阈值会向短波方向移动,从而使得能隙变宽。另外,TiO2催化剂的尺寸细化诱导产生了许多新的物理化学特性:例如表面效应、隧道效应、电荷转移加速效应、激子效应等,光催化剂氧化还原势增大,反应效率得到提高。表面贵金属沉积h+e-hνSemiconductorNobelMetale-E(V)EfEfh+NobelMetalSemiconductorCBVBΦb半导体表面贵金属沉积机理示意图研究表明将pt、Pb、Ag、Ir、Au、Ru等惰性金属沉积在Ti02催化剂的表面可以普遍提高光催化反应的效率。主要的作用机理是:通过惰性金属和Ti02构成的电极对,光生载流子重新分配,电子可以从费米能级较高的n-半导体转移到费米能级较低的金属半导体,直到它们的费米能级相同。形成的肖特基势垒可以促使电子一空穴的有效分离,降低e-,h+的复合,从而提高光催化剂的活性。载Pt后的TiO2光催化性能PtTiO2e-h+h≥EgAAreducedDDoxidized光生电子在Pt岛上富集,光生空穴向TiO2晶粒表面迁移,这样形成的微电池促进了光生电子和空穴的分离,提高了光催化效率2001年Asahi等日本学者报道了氮掺杂的TiO2,引起人们对阴离子掺杂光催化剂及其可见光响应性能的广泛兴趣。过渡金属离子的掺杂会

1 / 76
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功