教育资源教育资源第一课时平行四边形的性质(1)一、教学目的1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点4.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.5.难点:运用平行四边形的性质进行有关的论证和计算.三、教学过程1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.①∵AB//DC,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.教育资源教育资源(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA(ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1平行四边形的对边相等.平行四边形性质2平行四边形的对角相等.四、例题分析例1(见教材例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.五、随堂练习1.填空:(1)在ABCD中,∠A=50,则∠B=度,∠C=度,∠D=度.(2)如果ABCD中,∠A—∠B=240,则∠A=度,∠B=度,∠C=度,∠D=度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB=cm,BC=cm,CD=cm,CD=cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.六、作业设计:第二课时平行四边形的性质(2)一、教学目的1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.二、重点、难点4.重点:平行四边形对角线互相平分的性质,以及性质的应用.5.难点:综合运用平行四边形的性质进行有关的论证和计算.三、教学过程教育资源教育资源1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是360).②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转180,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.四、习题分析例1(补充)已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(ASA).∴OE=OF,AE=CF(全等三角形对应边相等).∵ABCD,∴AB=CD(平行四边形对边相等).∴AB—AE=CD—CF.即BE=FD.※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.解略例2已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.教育资源教育资源分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算五、随堂练习1.在平行四边形中,周长等于48,①已知一边长12,求各边的长②已知AB=2BC,求各边的长③已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长2.如图,ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是_______cm.3.ABCD一内角的平分线与边相交并把这条边分成cm5,cm7的两条线段,则ABCD的周长是_____cm.六、作业设计:第三课时平行四边形的判定(1)一、教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二、重点、难点重点:平行四边形的判定方法及应用.难点:平行四边形的判定定理与性质定理的灵活应用.三、教学过程(一)温故知新1.如图在平行四边形ABCD中,DB=DC,∠A=65°,CE⊥BD于E,教育资源教育资源则∠BCE=.2.如图,在□ABCD中,AE⊥BC于E,AF⊥CD于F,已知AE=4,AF=6,□ABCD的周长为40,试求□ABCD的面积。(二)学习新知1.自学课本P86-P87,掌握平行四边形的判定定理,注意定理条件和结论,并会证明。2.自学例子,并证明。独立完成P87的练习。(三)释疑提高1.以不共线的三点A、B、C为顶点的平行四边形共有个。2.一个四边形的边长依次为a、b、c、d,且a2+b2+c2+d2=2ac+2bd,这个四边形是。3.如图,在△ABC的边AB上截取AE=BF,过E作ED∥BC交AC于D,过F作FG∥BC交AC于G,求证:ED+FG=BC。4.如图,线段AB、CD相交于点O,AC∥DB,AO=BO,E、F分别为OC、OD的中点,连结AF、BE,求证AF∥BE。5.如图,已知O是平行四边形ABCD对角线AC的中点,过点O作直线EF分别交AB、CD于E、F两点,(1)求证:四边形AECF是平行四边形;(2)填空,不填辅助线的原因中,全等三角形共有对。6.如图,在□ABCD中,点E是AD的中点,BE的延长线与CD的延长线相交于点F,(1)求证:△ABE≌△DFE;(2)试连结BD、AF,判断四边形ABDF的形状,并证明你的结论。四.小结归纳五.作业设计ABCDEFEDCBAABCDEFEDCBA教育资源教育资源第四课时平行四边形的判定(2)重点、难点1.重点:平行四边形各种判定方法及其应用,根据不同条件能正确地选择判定方法.2.难点:平行四边形的判定定理与性质定理的综合应用.一.温故知新1.如图在□ABCD中,EF∥AD,MN∥AB,EF、MN相交于点P,图中共有个平行四边形。2.如果平行四边形的两条对角线长分别为8和12,那么它的边长不能取()A.10B.8C.7D.63.如图,在□ABCD中,AC、BD交于点O,EF过点O分别交AB、CD于E、F,AO、CO的中点分别为G、H,求证:四边形GEHF是平行四边形。二.学习新知1.自学课本P88平行四边形的判定定理,注意定理条件和结论,并会证明。2.自学例子,掌握三角形中位线概念和中位线定理,并会证明。3.掌握平行线间的距离。4.完成P90面练习1.2.3。三.释疑提高1.如图,△ABC是等边三角形,P是其内任意一点,PD∥AB,PE∥BC,DE∥AC,若△ABC周长为8,则PD+PE+PF=。2.四边形ABCD是平行四边形,BE平分∠ABC交AD于E,DF平ABCDEFOHGPFEDCBA教育资源教育资源分∠ADC交BC于点F,求证:四边形BFDE是平行四边形。3.已知□ABCD中,E、F分别是AD、BC的中点,AF与EB交于G,CE与DF交于H,求证:四边形EGFH为平行四边形。4.如图,在四边形ABCD中,AB=6,BC=8,∠A=120°,∠B=60°,∠BCD=150°,求AD的长。5.已知BE、CF分别为△ABC中∠B、∠C的平分线,AM⊥BE于M,AN⊥CF于N,求证MN∥BC。6.如图,在□ABCD中,EF∥AB交BC于E,交AD于F,连结AE、BF交于点M,连结CF、DE交于点N,求证:(1)MN∥AD;(2)MN=12AD四.课堂练习1.(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是().(A)AB∥CD,AD=BC(B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC(D)AB=AD,CB=CD2.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,找出图中的平行四边形,并说明理由.五.作业设计第五课时平行四边形的判定(3)一、教学目标:1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.能运用综合法证明有关三角形中位线性质的结论.重点、难点二、重点、难点1.重点:掌握和运用三角形中位线的性质.NMFEDCBA教育资源教育资源2.难点:三角形中位线性质的证明(辅助线的添加方法).三、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?3.创设情境实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?四、例习题分析例1(教材P98例4)如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=21BC.分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△C