必修五不等式1、0abab;0abab;0abab.2、不等式的性质:①abba;②,abbcac;③abacbc;④,0abcacbc,,0abcacbc;⑤,abcdacbd;⑥0,0abcdacbd;⑦0,1nnababnn;⑧0,1nnababnn.小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。在字母比较的选择或填空题中,常采用特值法验证。3、一元二次不等式解法:(1)化成标准式:20,(0)axbxca;(2)求出对应的一元二次方程的根;(3)画出对应的二次函数的图象;(4)根据不等号方向取出相应的解集。线性规划问题:1.了解线性约束条件、目标函数、可行域、可行解、最优解2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.3.解线性规划实际问题的步骤:(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;(4)验证。两类主要的目标函数的几何意义:①zaxby-----直线的截距;②22()()zxayb-----两点的距离或圆的半径;4、均值定理:若0a,0b,则2abab,即2abab.20,02ababab;2ab称为正数a、b的算术平均数,ab称为正数a、b的几何平均数.5、均值定理的应用:设x、y都为正数,则有⑴若xys(和为定值),则当xy时,积xy取得最大值24s.⑵若xyp(积为定值),则当xy时,和xy取得最小值2p.注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。