外接球专项训练[带详细答案解析]

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

完美WORD格式范文.范例.指导.参考外接球专项训练参考答案一.选择题1、已知球的半径为2,圆和圆是球的互相垂直的两个截面,圆和圆的面积分别为和,则()A.1B.C.2D.【答案】D【解析】因由球心距与截面圆的半径之间的关系得,故,应选D。考点:球的几何性质及运算。2、在三棱锥中,,中点为,,则此三棱锥的外接球的表面积为()A.B.C.D.【答案】C【解析】如图,易知,由余弦定理可得,因,故;同理,故,所以是棱长为的正方体的四个顶点,其外接球就是正方体的外接球,半径为,所以外接球的面积为,应选C。考点:球与几何体的外接和表面积的计算公式。3、球的球面上有四点,其中四点共面,是边长为2的正三角形,面面,则棱锥的体积的最大值为()A.B.C.D.4OMNMN2||MN35538212221222221ddRdRd52221ddMNMCABP312,1212PMACBM2333231PB222PAABPBBAPB222PCCBPBBCPBCBAP,,,2223R6464SO,,,SABC,,,OABCABCSABABCSABC33323完美WORD格式范文.范例.指导.参考【答案】A【解析】设球心和的外心为,延长交于点,则由球的对称性可知,继而由面面可得所在的平面,所以是三棱锥的高;再由四点共面可知是的中心,故,当三棱锥的体积最大时,其高为,故三棱锥的体积的最大值为,应选A。考点:几何体的外接球等有关知识的运用。【易错点晴】球与几何体的外接和内切问题一直是高中数学中题的重要题型,也高考和各级各类考试的难点内容。本题将三棱锥与球外接整合在一起考查三棱锥的体积的最大值无疑是加大了试题的难度。解答本题时要充分利用题设中提供的有关信息,先确定球心的位置是三角形的外心,再求外接球的半径并确定当为三棱锥的高时,该三棱锥的体积最大并算出其最大值为。4、已知在三棱锥中,面,,若三棱锥的外接球的半径是3,,则的最大值是()A.36B.28C.26D.18【答案】D【解析】因为面,所以,,又因为,所以平面,所以,所以有,则由基本不等式可得,当且仅当时等号成立,所以的最大值是,故选D.考点:1.线面垂直的判定与性质;2.长方体外接球的性质;3.基本不等式.【名师点睛】本题考查线面垂直的判定与性质、长方体外接球的性质、基本不等式,中档题;立体几何的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值或利用基本不等式来求解.5、如图所示是一个几何体的三视图,则这个几何体外接球的表面积为()ABCOCOABPABPDSABABCPDABCPD,,,OABCOABC332,33ROP1)33()332(22PD331243312OABC332RPD33PABCPAABCPCABPABCABCABPACPSSSSSPAABCPAABPAACPCABABPACABAC2222(23)36ABACAP22211()()1822ABCABPACPSSSSABACABAPAPACABACAPABACAPS36BACP完美WORD格式范文.范例.指导.参考A.B.C.D.【答案】C【解析】几何体为一个四棱锥,外接球球心为底面正方形(边长为4)中心,所以半径为,表面积为,选C.考点:三视图,外接球【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.6、如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为()A.B.C.D.【答案】D【解析】由三视图可知,这个几何体是三棱锥.如图所示,为球心,为等边三角形的外心,由图可知,故外接球面积为.81632642224(22)3220389193OFBCD22222131922312ROFCF193完美WORD格式范文.范例.指导.参考考点:三视图.【思路点晴】设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.7、如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球半径为()A.B.C.D.【答案】C【解析】从三视图可以看出这是一个正方体上的一个四面体,如图,其中正的边长为,其外接圆的半径,同样正的外接圆的半径是,由球的对称性可知球心必在正方体的对角线上,且,该球经过六个点,设球心到平面的距离为;球心到平面的距离为,而两个平面和之间的距离为EDBACOFx,,abc222abc227231123MNP243241r111PNM3222rOAC934,9382211hCOhAO111,,,,,PNMPNMO111PNM1dOMNP2dMNP111PNM完美WORD格式范文.范例.指导.参考,则由球心距、垂面圆半径之间的关系可得,所以,即,又,将其代入可得,由此可得,所以,所以外接球的半径,应选C.考点:三视图的识读和理解及几何体体积的计算.【易错点晴】本题以网格纸上的几何图形为背景,提供了一个三棱锥的几何体的三视图,要求求其外接球的半径,是一道较为困难的难题.难就难在无法搞清其几何形状,只知道是一个三棱锥(四面体)是没有任何用的.通过仔细观察不难看出这是一个正方体上的一个四面体,如图,正的边长为,其外接圆的半径,同样正的外接圆的半径是,由球的对称性可知球心必在对角线上,且经过六个点,设球心到平面的距离为;球心到平面的距离为,而两个平面和之间的距离为,则由球心距垂面圆半径之间的关系可得,所以,即,又,将其代入可得,由此可得,所以,所以外接球的半径,其中计算时可用等积法进行.8、一直三棱柱的每条棱长都是,且每个顶点都在球的表面上,则球的半径为()A.B.C.D.【答案】A2121334)(34ddhhd2222221212,rdRrdR822212122rrdd82122dd33421dd82122dd3212dd3352d113333832522222rdR11ROO2O1P1N1M1CAPNMMNP243241r111PNM3222rO111,,,,,PNMPNMO111PNM1dOMNP2dMNP111PNM2121334)(34ddhhd2222221212,rdRrdR822212122rrdd82122dd33421dd82122dd3212dd3352d113333832522222rdR11R21,hh3OO212673完美WORD格式范文.范例.指导.参考【解析】球的半径满足考点:外接球【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.9、若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正视图和侧视图如图所示,则此几何体的表面积是A.24πB.24π+8πC.24π+4πD.32π答案:C10、已知三棱锥的底面是以为斜边的等腰直角三角形,则三棱锥的外接球的球心到平面的距离是()(A)(B)1(C)(D)【答案】A【解析】因为三棱锥的底面是以为斜边的等腰直角三角形,,在面内的射影为中点,平面,上任意一点到的距离相等.,,在面内作的垂直平分线,则为的外接球球心.,,,,即为到平面的距离,故选A.考点:球内接多面体;点到面的距离的计算.【名师点睛】(1)一般要过球心及多面体中的特殊点或过线作截面将空间问题转化为平面问题,从而寻找几何体各元素之间的关系.(2)若球面上四点P,A,B,C中PA,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.(3)一般三棱锥的外接球的球心可通过其中一个面的外心作此平面的垂线,则球心必在此垂线上.11、已知三棱锥的底面是以为斜边的等腰直角三角形,则三棱锥的外接球的球心到平面的距离是()(A)(B)1(C)(D)【答案】A12、某四棱锥的三视图如图所示,则该四棱锥外接球的表面积是()O2223321()(3)232RRSABCAB2,2,ABSASBSCABC333332SABCAB2SASBSCSABCABHSHABCSH,,ABC3SH1CHSHCSCMOOSABC2SC1SM30OSM233,33SOOHOABCSABCAB2,2,ABSASBSCABC333332完美WORD格式范文.范例.指导.参考A.B.C.D.【答案】B【解析】几何体为一个四棱锥,其顶点为长方体四个顶点,长方体的长宽高为4,3,3,因此四棱锥外接球直径为长方体对角线,即,表面积是选B.考点:三视图【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.13、已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.【答案】A【解析】连接,则由已知得,可知三棱锥是棱长为的正四面体,其高为,则三棱锥的高为,所以三棱锥的体积为.考点:三棱锥外接球.14、半径为1的三个球平放在平面上,且两两相切,其上放置一半径为2的球,由四个球心构成一个新四面体,则该四面体外接球的表面积为()A.B.C.D.【答案】A【解析】由已知条件可知,该四面体是底面边长为的等边三角形,且侧棱长为.该四面体外接球半径计算1723417343173422223+3+4R2434.ROCOBOA,,1ACBCABOCOBOAABCO136ABCS362ABCS623624331,,ABCD,,,ABCDO2432324392918692323完美WORD格式范文.范例.指导.参考公式为,其中为底面外接圆半径,为高.本题中,故.考点:球的内接几何体.15、在正三棱锥中,是的中点,且,底面边长,则正三棱锥的外接球的表面积为()A.B.C.D.【答案】【解析】根据三棱锥为正三棱锥,可证明出AC⊥SB,结合SB⊥AM,得到SB⊥平面SAC,因此可得SA、SB、SC三条侧棱两两互相垂直.最后利用公式求出外接圆的直径,结合球的表面积公式,可得正三棱锥S-ABC的外接球的表面积.取AC中点,连接BN、SN,∵N为AC中点,SA=SC,∴AC⊥SN,同理AC⊥BN,∵SN∩BN=N,∴AC⊥平面SBN,∵SB平面SBN,∴AC⊥SB,∵SB⊥AM且AC∩AM=A,∴SB⊥平面SAC?SB⊥SA且SB⊥AC,∵三棱锥S-ABC是正三棱锥,∴SA

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功