第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。解:根据理想气体方程1.20℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度。解:将甲烷(Mw=16.042g/mol)看成理想气体:PV=nRT,PV=mRT/Mw甲烷在标准状况下的密度为=m/V=PMw/RT=10116.042/8.314515(kg/m3)=0.716kg/m31.3一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。若改充以25℃,13.33kPa的某碳氢化合物气体,则总质量为25.0163g。试估算该气体的摩尔质量。水的密度1g·cm3计算。解:球形容器的体积为V=(125-25)g/1g.cm-3=100cm3将某碳氢化合物看成理想气体:PV=nRT,PV=mRT/MwMw=mRT/PV=(25.0163-25.0000)×8.314×298.15/(13330×100×10-6)Mw=30.31(g/mol)1.4两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到100℃,另一个球则维持0℃,忽略连接细管中气体体积,试求该容器内空气的压力。解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。标准状态:因此,1.50℃时氯甲烷(CH3Cl)气体的密度ρ随压力的变化如下。试作pp图,用外推法求氯甲烷的相对分子质量。1.6今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200cm3容器中,直至压力达101.325kPa,测得容器中混合气体的质量为0.3897g。试求该混合气体中两种组分的摩尔分数及分压力。解:将乙烷(Mw=30g/mol,y1),丁烷(Mw=58g/mol,y2)看成是理想气体:PV=nRTn=PV/RT=8.314710-3mol(y130+(1-y1)58)8.314710-3=0.3897y1=0.401P1=40.63kPay2=0.599P2=60.69kPa1.7如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.81.9室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。重复三次。求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。1.1025℃时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7kPa,于恒定总压下冷却到10℃,使部分水蒸气凝结为水。试求每摩尔干乙炔气在该冷却过程中凝结出水的物质的量。已知25℃及10℃时水的饱和蒸气压分别为3.17kPa及1.23kPa。解:该过程图示如下设系统为理想气体混合物,则1.11有某温度下的2dm3湿空气,其压力为101.325kPa,相对湿度为60%。设空气中O2与N2的体积分数分别为0.21与0.79,求水蒸气、O2与N2的分体积。已知该温度下水的饱和蒸汽压为20.55kPa(相对湿度即该温度下水蒸气的分压与水的饱和蒸汽压之比)。1.12一密闭刚性容器中充满了空气,并有少量的水。但容器于300K条件下大平衡时,容器内压力为101.325kPa。若把该容器移至373.15K的沸水中,试求容器中到达新的平衡时应有的压力。设容器中始终有水存在,且可忽略水的任何体积变化。300K时水的饱和蒸气压为3.567kPa。解:将气相看作理想气体,在300K时空气的分压为由于体积不变(忽略水的任何体积变化),373.15K时空气的分压为由于容器中始终有水存在,在373.15K时,水的饱和蒸气压为101.325kPa,系统中水蒸气的分压为101.325kPa,所以系统的总压1.13CO2气体在40℃时的摩尔体积为0.381dm3·mol-1。设CO2为范德华气体,试求其压力,并比较与实验值5066.3kPa的相对误差。1.14今有0℃,40.530kPa的N2气体,分别用理想气体状态方程及vanderWaals方程计算其摩尔体积。实验值为。解:用理想气体状态方程计算用vanderWaals计算,查表得知,对于N2气(附录七),用MatLabfzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.15试由波义尔温度TB的定义式,证明范德华气体的TB可表示为TB=a/(bR)式中a,b为范德华常数。1.16把25℃的氧气充入40dm3的氧气钢瓶中,压力达202.7×102kPa。试用普遍化压缩因子图求钢瓶中氧气的质量。解:氧气的TC=-118.57℃,PC=5.043MPa氧气的Tr=298.15/(273.15-118.57)=1.93,Pr=20.27/5.043=4.02Z=0.95PV=ZnRTn=PV/ZRT=202.7×105×40×10-3/(8.314×298.15)/0.95=344.3(mol)氧气的质量m=344.3×32/1000=11(kg)第二章热力学第一定律2.11mol水蒸气(H2O,g)在100℃,101.325kPa下全部凝结成液态水。求过程的功。假设:相对于水蒸气的体积,液态水的体积可以忽略不计。解:n=1mol恒温恒压相变过程,水蒸气可看作理想气体,W=-pambΔV=-p(Vl-Vg)≈pVg=nRT=3.102kJ2.2始态为25℃,200kPa的5mol某理想气体,经途径a,b两不同途径到达相同的末态。途经a先经绝热膨胀到-28.47℃,100kPa,步骤的功;再恒容加热到压力200kPa的末态,步骤的热。途径b为恒压加热过程。求途径b的及。解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律2.3某理想气体Cv,m=1.5R。今有该气体5mol在恒容下温度升高50℃。求过程的W,Q,ΔH和ΔU。解:理想气体恒容升温过程n=5molCV,m=3/2RQV=ΔU=nCV,mΔT=5×1.5R×50=3.118kJW=0ΔH=ΔU+nRΔT=nCp,mΔT=n(CV,m+R)ΔT=5×2.5R×50=5.196kJ2.42mol某理想气体,Cp,m=7/2R。由始态100kPa,50dm3,先恒容加热使压力升高至200kPa,再恒压冷却使体积缩小至25dm3。求整个过程的W,Q,ΔH和ΔU。解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律2.51mol某理想气体于27℃、101.325kPa的始态下,现受某恒定外压恒温压缩至平衡态,再恒容升温至97.0℃、250.00kPa。求过程的W、Q、△U、△H。已知气体的CV,m=20.92J·K·mol-1。2.62.7容积为0.1m3的恒容密闭容器中有一绝热隔板,其两侧分别为0℃,4mol的Ar(g)及150℃,2mol的Cu(s)。现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。已知:Ar(g)和Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。解:图示如下假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计则该过程可看作恒容过程,因此假设气体可看作理想气体,,则2.8单原子理想气体A与双原子理想气体B的混合物共5mol,摩尔分数,始态温度,压力。今该混合气体绝热反抗恒外压膨胀到平衡态。求末态温度及过程的。解:过程图示如下分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。因此,单原子分子,双原子分子由于对理想气体U和H均只是温度的函数,所以2.9在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2mol,0℃的单原子理想气体A及5mol,100℃的双原子理想气体B,两气体的压力均为100kPa。活塞外的压力维持在100kPa不变。今将容器内的隔板撤去,使两种气体混合达到平衡态。求末态的温度T及过程的。解:过程图示如下假定将绝热隔板换为导热隔板,达热平衡后,再移去隔板使其混合,则由于外压恒定,求功是方便的由于汽缸为绝热,因此2.10已知水(H2O,l)在100℃的饱和蒸气压,在此温度、压力下水的摩尔蒸发焓。求在在100℃,101.325kPa下使1kg水蒸气全部凝结成液体水时的。设水蒸气适用理想气体状态方程式。解:该过程为可逆相变2.11已知水(H2O,l)在100℃的饱和蒸气压ps=101.325kPa,在此温度、压力下水的摩尔蒸发焓。试分别求算下列两过程的W,Q,ΔU和ΔH。(水蒸气可按理想气体处理)(1)在100℃,101.325kPa条件下,1kg水蒸发为水蒸气(2)在恒定100℃的真空容器中,1kg水全部蒸发为水蒸气,并且水蒸气压力恰好为101.325kPa。解:(1)题给过程的始末态和过程特性如下:n=m/M=1kg/18.015g·mol-1=55.509mol题给相变焓数据的温度与上述相变过程温度一致,直接应用公式计算n(ΔvapHm)=2257kJW=-pambΔV=-p(Vg-Vl)≈-pVg=-ngRT=-172.2kJΔU=Qp+W=2084.79kJ(2)真空容器中W=0kJ2.12已知100kPa下冰的熔点为0℃,此时冰的比熔化焓热J·g-1.水和冰的平均定压热容分别为及。今在绝热容器内向1kg50℃的水中投入0.8kg温度-20℃的冰。求:(1)末态的温度。(2)末态水和冰的质量。解:1kg50℃的水降温致0℃时放热0.8kg-20℃的冰升温致0℃时所吸热完全融化则需热因此,只有部分冰熔化。所以系统末态的温度为0℃。设有g的冰熔化,则有系统冰和水的质量分别为2.13100kPa下,冰(H2O,s)的熔点为0℃。在此条件下冰的摩尔融化热。已知在-10℃~0℃范围内过冷水(H2O,l)和冰的摩尔定压热容分别为和。求在常压及-10℃下过冷水结冰的摩尔凝固焓。解:过程图示如下平衡相变点,因此2.14已知水(H2O,l)在100℃的摩尔蒸发焓,水和水蒸气在25~100℃范围间的平均摩尔定压热容分别为和求在25℃时水的摩尔蒸发焓。解:由已知温度的相变焓求未知温度的相变焓,常压下对气体摩尔焓的影响通常可以忽略,可直接应用p68公式(2.7.4)2.1525℃下,密闭恒容的容器中有10g固体奈C10H8(s)在过量的O2(g)中完全燃烧成CO2(g)和H2O(l)。过程放热401.727kJ。求(1)(2)的;(3)的;解:(1)C10H8的分子量M=128.174,反应进程。(2)。(3)2.16应用附录中有关物资在25℃的标准摩尔生成焓的数据,计算下列反应在25℃时的及。(1)(2)(3)解:查表知NH3(g)NO(g)H2O(g)H2O(l)-46.1190.25-241.818-285.830NO2(g)HNO3(l)Fe2O3(s)CO(g)33.18-174.10-824.2-110.525(1)(2)(3)2.17应用附录中有关物资的热化学数据,计算25℃时反应的标准摩尔反应焓,要求:(1)应用25℃的标准摩尔生成焓数据;(2)应用25℃的标准摩尔燃烧焓数据。解:查表知Compound000因此,由标准摩尔生成焓由标准摩尔燃烧焓2.182.19已知25℃甲酸甲脂(HCOOCH3,l)的标准摩尔燃烧焓为,甲酸(HC