高中物理3-5第十七章-波粒二象性-学案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

17、1能量量子化:物理学的新纪元【学习目标】1、了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射2、了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系3、了解能量子的概念【自主学习】一、黑体与黑体辐射一、黑体与黑体辐射1.热辐射:周围的一切物体都在辐射电磁波.这种辐射与物体的_____有关,所以叫做热辐射.2.黑体:某种物体能够______吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.二、黑体辐射的实验规律1.一般材料的物体,辐射的电磁波除与______有关外,还与材料的种类及表面状况有关.2.黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.随着温度的升高,一方面,各种波长的辐射强度都有________.另一方面,辐射强度的极大值向波长较____的方向移动.三、能量子1.定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的________.即:能的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做________.2.能量子大小:ε=hν,其中ν是电磁波的频率,h称为普朗克常量.h=_______________J·s,(一般取h=6.63×10-34J·s)3.能量的量子化:在微观世界中能量是量子化的,或者说微观粒子的能量是分立的.这种现象叫能量的量子化.【基础巩固】1、关于黑体辐射的实验规律叙述正确的有()A.随着温度的升高,各种波长的辐射强度都有增加B.随着温度的升高,辐射强度的极大值向波长较短的方向移动C.黑体热辐射的强度与波长无关D.黑体辐射无任何实验2、黑体辐射的实验规律如图所示,由图可知()A.随温度升高,各种波长的辐射强度都有增加B.随温度降低,各种波长的辐射强度都有增加C.随温度升高,辐射强度的极大值向波长较短的方向移动D.随温度降低,辐射强度的极大值向波长较长的方向移动3、能引起人的眼睛视觉效应的最小能量为10—18J,已知可见光的平均波长约为60μm,普朗克常量丸:6.63x10—34J·s,则进人人眼的光子数至少为()A.1个B.3个C.30个D.300个3、某广播电台发射功率为10kW,在空气中波长为187.5m的电磁波,试求:(1)该电台每秒钟从天线发射多少个光子?(2)若发射的光子四面八方视为均匀的,求在离天线2.5km处,直径为2m的环状天线每秒接收的光子个数以及接收功率?学后反思:17.2光的粒子性:科学的转折【学习目标】1.通过实验了解光电效应的实验规律。2.知道爱因斯坦光电效应方程以及意义。3.了解康普顿效应,了解光子的动量【重点、难点】重点:光电效应的实验规律难点:爱因斯坦光电效应方程以及意义【自主学习】一、光电效应定义:在照射下从物体发射出的现象,发射出来的电子叫做.二、光电效应的实验规律1、认识研究光电效应的电路图如右图,光线经窗口照在阴极K上,便有逸出——光电子。光电子在电场作用下形成。2、光电效应的实验规律(1)存在饱和电流在上图的实验中,保持光照的条件不变,在初始电流较小的情况下,随着所加电压的增大,光电流,但是存在一个,即:光电流达到此值以后,即使增加电压,光电流也不再增加。(2)存在遏止电压在上图的实验中,即使电压为0,光电流也不为,只有将所加电压反向的时候(在光电管间形成使电子减速的电场),光电流才可能为。使光电流减小到0的反向电压称为,用符号表示。遏止电压的存在表明:,初速度的上限应该满足关系:。实验表明:对于一定颜色的光,遏止电压都是,与光照强度,这表明:光电子的能量只与有关,而与无关。(3)存在截止频率实验还表明,当入射光的频率减小到某一数值νc时,即使不施加反向电压也没有光电流,这表明已经没有了,这个频率称为,也就是说当:入射光的频率小于时,将不发生光电效应。(4)光电效应具有瞬时性当入射光频率超过截止频率νc时,无论入射光怎样微弱,几乎在照到金属时产生光电流,这个时间不超过。三、光电效应解释中的疑难按照经典电磁理论,对于光电效应该如何解释?还应得出如下的结论:3/10(1)(2)(3)但是这些结论与观察到的现象不符,为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。四、爱因斯坦的光量子假设1、内容:光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的组成的。频率为ν的光的能量子为,这些能量子称为。(h为普朗克常量)2、爱因斯坦光电效应方程在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子,另一部分变为光电子逸出后的。由能量守恒可得出:W0为电子逸出金属表面所需做的功,称为逸出功。Ek为光电子的最大初动能。爱因斯坦光电效应方程:3、爱因斯坦对光电效应的解释:①光强大,光子数多,释放的光电子也多,所以光电流也大。②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。③从方程可以看出光电子初动能和照射光的频率成线性关系④从光电效应方程中,当初动能为零时,可得截止频率:hWc0五、光电效应理论的验证美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦光电效应方程,h的值与理论值完全一致,又一次证明了“光量子”理论的正确。由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。密立根由于研究基本电荷和光电效应,特别是通过著名的油滴实验,证明电荷有最小单位。获得1923年诺贝尔物理学奖。六、康普顿效应1、光的散射光在介质中与物质微粒相互作用,因而,这种现象叫做光的散射。2、康普顿效应1923年康普顿在做X射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,这个现象称为:。3、光电效应和康普顿效应深入的揭示了,前者表明:,后者表明:。七、光子的动量P=【基础巩固】1.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针张开了一个角度,如图所示,这时()A.锌板带正电,指针带负电B.锌板带正电,指针带正电C.锌板带负电,指针带负电D.锌板带负电,指针带正电2.利用光子说对光电效应的解释,下列说法正确的是()A.金属表面的一个电子只能吸收一个光子B.电子吸收光子后一定能从金属表面逸出,成为光电子C.金属表面的一个电子吸收若干个光子,积累了足够的能量才能从金属表面逸出D.无论光子能量大小如何,电子吸收光子并积累了能量后,总能逸出成为光电子3.光电效应的规律中,经典波动理论不能解释的有()A.入射光的频率必须大于被照射金属的极限频率时才能产生光电效应B.光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大C入射光照射到金属上时,光电子的发射几乎是瞬时的,一般不超过10—9sD.当入射光频率大于极限频率时,光电子数目与入射光强度成正比4.如图所示,电路中所有元件完好,但光照射到光电管上,灵敏电流计中没有电流通过,其原因可能是()A.入射光太弱B.入射光波长太长C.光照时间短D.电源正负极接反5.用不同频率的紫外线分别照射钨和锌的表面而产生光电效应,可得到光电子最大初动能Ek随入射光频率v变化的Ek—v图象,已知钨的逸出功是3.28eV,锌的逸出功是3.34eV,若将两者的图象分别用实线与虚线画在同一个Ek—v图上,则下图中正确的是()6.用绿光照射金属钾时恰能发生光电效应,在下列情况下仍能发生光电效应的是()A.用红光照射金属钾,而且不断增加光的强度B.用较弱的紫外线照射金属钾C.用黄光照射金属钾,且照射时间很长D.只要入射光的波长小于绿光的波长,就可发生光电效应7.在做光电效应演示实验时,,把某金属板连在验电器上,第一次用弧光灯直接照射金属板,验电器的指针张开一个角度,第二次在弧光灯和金属板之间插入一块普通玻璃,再用弧光灯照射,验电器的指针不张开。由此可以判定,使金属板产生光电效应的是弧光灯中的()A.可见光成分B.红外线成分C.无线电波成分D.紫外线成分17.3崭新的一页:粒子的波动性【学习目标】(1)知道光、实物粒子具有波粒二象性;(2)知道德布罗意假说的内容,公式表达;(3)了解物质波的验证过程。【重点、难点】重点:知道德布罗意波及德布罗意波波长计算粒子同样具有波动性。难点:理解德布罗意波(物质波)及表现规律。【自主学习】1.了解光的波动性和粒子性的实验基础。干涉和衍射现象说明了光具有波动性。而光电效应现象又无可辩驳地证明了光具有粒子性,因此,现代物理学认为:光具有。5/102.正确理解光的波粒二象性(1)少量光子的行为表现为粒子性,大量光子的行为表现为波动性。(2)频率越低波动性越显著,越容易看到光的干涉和衍射现象;频率越高粒子性越显著,越不容易看到光的干涉和衍射现象。(3)光在传播过程中往往表现出波动性,与物质发生作用时往往表现为粒子性。3.光的波动性和粒子性与经典波和经典粒子的概念不同(1)眀条纹是光子到达的概率较大,暗条纹光子到达的概率较小,这与经典波的振动叠加原理有所不同。(2)光的粒子性是指光的能量不连续性,能量是一份一份的光子,没有一定的形状,也不占有一定的空间,这与经典粒子的概念有所不同。4.物质波1924年,法国物理学家徳布罗意提出:任何运动着的物体都有一种波与它对应,这种波就叫物质波,也叫徳布罗意波。物质波的波长:mvhph,其中h是普朗克常量。【基础巩固】1.下列现象中,说明光具有波动性的是()(A)光在两种介质的界面同时发生反射和折射(B)光的干涉和衍射(C)几束光交叉相遇后,继续按原来方向前进(D)光的直进2.很容易观察到无线电波的波动性,而很难观察到γ射线的干涉和衍射现象,这是因为()(A)无线电波只有波动性没有粒子性(B)γ射线只有粒子性没有波动性(C)γ射线的波长比无线电波短得多(D)无线电波与γ射线的产生机理不同,无法进行比较3.对光的波粒二象性的理解,正确的是()(A)凡是光的现象,都可用光的波动性去解释,也可用光的粒子性去解释(B)波粒二象性就是微粒说与波动说的统一(C)一切粒子的运动都具有波粒二象性(D)大量光子往往表现出波动性,少量光子往往表现出粒子性4.下列说法中正确的是()(A)关于光的粒子性,牛顿提出的微粒说和爱因斯坦提出的光子说是相同的(B)关于光的波动性,惠更斯提出的波动说和麦克斯韦提出的电磁说是相同的(C)光的波粒二象性就是既可以把光看作宏观概念上的波,以可以把光看作微观概念的粒子(D)光了说和光的波粒二象性都没有否定光的电磁说6.通过对光的本性认识不断深入,光的波粒二象性的发现,使我们知道粒子也可以具有性,微观世界具有的规律。7.说明光具有粒子性的现象是()(A)光电效应(B)光的干涉(C)光的衍射(D)光的色散8.光的干涉、衍射现象证明光具有,光电效应表明光具有,因此光具有。17.4概率波不确定性关系【学习目标】1.知道光波和物质波都是概率波2.了解“不确定关系”的具体含义【重点难点】1、人类对光的本性的认识的发展过程和不确定关系的概念2、难点:对量子化、波粒二象性、概率波等概念的理解;对不确定关系的定量应用【自主学习】1.经典粒子:粒子有一定的____________,有一定的__________有的还具有电荷有关。运动的基本特征是:任意时刻的确定的____________和____________以及时空中确定的__________。2.经典波:经典的波在时空是弥散开来的,基本特征是:具有______和______,即具有时空的周期性3概率波:光波是一种概率波,光的波动性不是光子之间____________引起的,而是光子自身_________的性质,光子在空间出现的概率可以通过波动的规律确定,所以光波是一种概率波。4.不确定性关系:(1)定义:在经典力学中,一个质点的位置和动量是可以同时测定的,在量子力学中,要同时测出位置和动量是不太可能的,这种关系叫____________关系。(2)表达式:___________【基础巩固】1.下列关于物质波的认识中正确的是()A.任何一个物体都有一种波和

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功