高三圆锥曲线经典总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

课题高考数学复习专题——圆锥曲线教学目标1.掌握三种圆锥曲线的定义、图像和简单几何性质。2.准确理解基本概念(如直线的倾斜角、斜率、距离、截距等)。3.熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)。4.熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)。5.在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算。6.了解线性规划的意义及简单应用。7.熟悉圆锥曲线中基本量的计算。8.掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)。9.掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题。重点难点1.掌握与圆锥曲线有关的轨迹方程的求解方法。2.掌握圆锥曲线中基本量的计算和直线与圆锥曲线的位置关系的常见判定方法。圆锥曲线概念、方法、题型、易误点及应试技巧总结1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F1,F2的距离的和等于常数2a,且此常数2a一定要大于21FF,当常数等于21FF时,轨迹是线段F1F2,当常数小于21FF时,无轨迹;双曲线中,与两定点F1,F2的距离的差的绝对值等于常数2a,且此常数2a一定要小于|F1F2|,定义中的“绝对值”与2a<|F1F2|不可忽视。若2a=|F1F2|,则轨迹是以F1,F2为端点的两条射线,若2a﹥|F1F2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。如(1)已知定点)0,3(),0,3(21FF,在满足下列条件的平面上动点P的轨迹中是椭圆的是A.421PFPFB.621PFPFC.1021PFPFD.122221PFPF(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。如已知点)0,22(Q及抛物线42xy上一动点P(x,y),则y+|PQ|的最小值是_____2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x轴上时12222byax(0ab)cossinxayb(参数方程,其中为参数),焦点在y轴上时2222bxay=1(0ab)。方程22AxByC表示椭圆2的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。如(1)已知方程12322kykx表示椭圆,则k的取值范围为____(2)若Ryx,,且62322yx,则yx的最大值是____,22yx的最小值是___(2)双曲线:焦点在x轴上:2222byax=1,焦点在y轴上:2222bxay=1(0,0ab)。方程22AxByC表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。如(1)双曲线的离心率等于25,且与椭圆14922yx有公共焦点,则该双曲线的方程_______(2)设中心在坐标原点O,焦点1F、2F在坐标轴上,离心率2e的双曲线C过点)10,4(P,则C的方程为_______(3)抛物线:开口向右时22(0)ypxp,开口向左时22(0)ypxp,开口向上时22(0)xpyp,开口向下时22(0)xpyp。3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由x2,y2分母的大小决定,焦点在分母大的坐标轴上。如已知方程12122mymx表示焦点在y轴上的椭圆,则m的取值范围是__(2)双曲线:由x2,y2项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F1,F2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,ab,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,a最大,222abc,在双曲线中,c最大,222cab。4.圆锥曲线的几何性质:(1)椭圆(以12222byax(0ab)为例):①范围:,axabyb;②焦点:两个焦点(,0)c;③对称性:两条对称轴0,0xy,一个对称中心(0,0),四个顶点(,0),(0,)ab,其中长轴长为2a,短轴长为2b;④准线:两条准线2axc;⑤离心率:cea,椭圆01e,e越小,椭圆越圆;e越大,椭圆越扁。如(1)若椭圆1522myx的离心率510e,则m的值是__(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(2)双曲线(以22221xyab(0,0ab)为例):①范围:xa或,xayR;②焦点:两个焦点(,0)c;③对称性:两条对称轴0,0xy,一个对称中心(0,0),两个顶点(,0)a,其中实轴长为2a,虚轴长为2b,特别地,当实轴和虚轴的长相等时,3称为等轴双曲线,其方程可设为22,0xykk;④准线:两条准线2axc;⑤离心率:cea,双曲线1e,等轴双曲线2e,e越小,开口越小,e越大,开口越大;⑥两条渐近线:byxa。如(1)双曲线的渐近线方程是023yx,则该双曲线的离心率等于______(2)双曲线221axby的离心率为5,则:ab=(3)设双曲线12222byax(a0,b0)中,离心率e∈[2,2],则两条渐近线夹角θ的取值范围是________(3)抛物线(以22(0)ypxp为例):①范围:0,xyR;②焦点:一个焦点(,0)2p,其中p的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y,没有对称中心,只有一个顶点(0,0);④准线:一条准线2px;⑤离心率:cea,抛物线1e。如设Raa,0,则抛物线24axy的焦点坐标为________5、点00(,)Pxy和椭圆12222byax(0ab)的关系:(1)点00(,)Pxy在椭圆外2200221xyab;(2)点00(,)Pxy在椭圆上220220byax=1;(3)点00(,)Pxy在椭圆内2200221xyab6.直线与圆锥曲线的位置关系:(1)相交:0直线与椭圆相交;0直线与双曲线相交,但直线与双曲线相交不一定有0,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0是直线与双曲线相交的充分条件,但不是必要条件;0直线与抛物线相交,但直线与抛物线相交不一定有0,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0也仅是直线与抛物线相交的充分条件,但不是必要条件。如(1)若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k的取值范围是_______(答:(2)直线y―kx―1=0与椭圆2215xym恒有公共点,则m的取值范围是_______(3)过双曲线12122yx的右焦点直线交双曲线于A、B两点,若│AB︱=4,则这样的直线有_____条(2)相切:0直线与椭圆相切;0直线与双曲线相切;0直线与抛物线相切;(3)相离:0直线与椭圆相离;0直线与双曲线相离;0直线与抛物线相离。特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:4相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线2222byax=1外一点00(,)Pxy的直线与双曲线只有一个公共点的情况如下:①P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。如(1)过点)4,2(作直线与抛物线xy82只有一个公共点,这样的直线有______(2)过点(0,2)与双曲线116922yx有且仅有一个公共点的直线的斜率的取值范围为______;(3)过双曲线1222yx的右焦点作直线l交双曲线于A、B两点,若AB4,则满足条件的直线l有____条(4)对于抛物线C:xy42,我们称满足0204xy的点),(00yxM在抛物线的内部,若点),(00yxM在抛物线的内部,则直线l:)(200xxyy与抛物线C的位置关系是_______(5)过抛物线xy42的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则qp11_______(6)设双曲线191622yx的右焦点为F,右准线为l,设某直线m交其左支、右支和右准线分别于RQP,,,则PFR和QFR的大小关系为___________(填大于、小于或等于)(7)求椭圆284722yx上的点到直线01623yx的最短距离(8)直线1axy与双曲线1322yx交于A、B两点。①当a为何值时,A、B分别在双曲线的两支上?②当a为何值时,以AB为直径的圆过坐标原点?7、焦半径(圆锥曲线上的点P到焦点F的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径red,其中d表示P到与F所对应的准线的距离。如(1)已知椭圆1162522yx上一点P到椭圆左焦点的距离为3,则点P到右准线的距离为____(2)已知抛物线方程为xy82,若抛物线上一点到y轴的距离等于5,则它到抛物线的焦点的距离等于____;(3)若该抛物线上的点M到焦点的距离是4,则点M的坐标为_____(4)点P在椭圆192522yx上,它到左焦点的距离是它到右焦点距离的两倍,则点P的横坐标为_______(5)抛物线xy22上的两点A、B到焦点的距离和是5,则线段AB的中点到y轴的距离5为______(6)椭圆13422yx内有一点)1,1(P,F为右焦点,在椭圆上有一点M,使MFMP2之值最小,则点M的坐标为_______8、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解。设椭圆或双曲线上的一点00(,)Pxy到两焦点12,FF的距离分别为12,rr,焦点12FPF的面积为S,则在椭圆12222byax中,①=)12arccos(212rrb,且当12rr即P为短轴端点时,最大为max=222arccosacb;②20tan||2Sbcy,当0||yb即P为短轴端点时,maxS的最大值为bc;对于双曲线22221xyab的焦点三角形有:①21221arccosrrb;②2cotsin21221brrS。如(1)短轴长为5,离心率32e的椭圆的两焦点为1F、2F,过1F作直线交椭圆于A、B两点,则2ABF的周长为________(2)设P是等轴双曲线)0(222aayx右支上一点,F1、F2是左右焦点,若0212FFPF,|PF1|=6,则该双曲线的方程为(3)椭圆22194xy的焦点为F1、F2,点P为椭圆上的动点,当PF2→·PF1→0时,点P的横坐标的取值范围是(4)双曲

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功