EEVVDDOO多多载载频频扩扩容容及及组组网网目录1.前言···································································································32.EVDO扩容标准···················································································32.1网络容量扩容的原则····································································42.2EVDO话务模型讨论·······································································42.3EVDO空口扩容标准·······································································63.EVDO多载波扩容频点··········································································64.EVDO多载波扩容策略··········································································74.1EVDO多载波扩容方式····································································74.2EVDO多载波扩容问题····································································84.3EVDO多载波组网策略····································································94.3.1空闲态···················································································94.3.2接入态··················································································104.3.3业务态··················································································114.3.4叠加载波输出功率设置·····························································124.3.5多载波插花组网的注意事项·······················································125.EVDO异频硬切换测试实例与双载波扩容实例···········································135.1EVDO异频硬切换测试实例·····························································135.1.1EVDO异频硬切换DT测试实例·····················································135.1.2EVDO异频硬切换CQT测试实例····················································195.1.3EVDO异频硬切换参数优化实例····················································235.2EVDO双载波扩容实例···································································281.前言随着中国电信EVDO网络的建设和业务的开展,在DO业务量较大的地区,EVDO单载波组网将无法满足业务的后续发展需求;同时网络中DO用户数的迅猛增加,进一步增加了网络的负担,有关EVDO速率变慢等方面的投诉也有所增加,对中国电信的EVDO业务推广产生了一定的负面影响。为了实现一定的业务策略,满足对多业务、多用户的良好支持,吸收热点地区的数据业务话务量,势必需要对负荷高、用户数多的DO基站进行扩容,引入EVDO双(多)载波组网。本文主要以华为CDMA1xEVDO系统的话务模型和扩容建议为参考,结合宁波电信EVDO网络的实际情况,总结整理出EVDO基站的空口扩容标准、扩容频点、扩容策略及后续扩容注意事项。以求能够为其他EVDO本地网的扩容监控和扩容实施提供建议和支持,为后续EVDO业务的顺利开展提供保障,满足DO用户愉悦的3G网络使用感受。2.EVDO扩容标准CDMA1xEVDORevA系统是干扰受限系统,容量除了与无线传播环境和链路带宽相关,还与小区覆盖、用户分布、业务模型以及调度算法相关,有“软”容量特性。基于CDMA1xEVDORevA网络前向时分复用和多用户轮询调度的技术特点,理论上前向可以容纳非常多的用户,只是在用户数很多的情况下,各用户分配到的时隙会非常少,用户速率会非常低,感受会很差。因此,CDMA1xEVDORevA容量主要是考虑用户最终的速率感受。本文在分析话务模型的基础上,从扇区吞吐能力、DO业务信道连接建立时长的分析中得到每载扇的等效用户数和等效速率,同时考虑TCH信道平均时隙占用率,综合判断是否需要进行扩容。因此,EVDO网络空口扩容的关键点就是在较高的TCH信道时隙占用率和单载扇吞吐率(吞吐能力)前提下,用户的等效平均速率较低,从而影响了用户的实际使用感受,这时就需要扩容了。注意,基站扇区的扩容需求是通过一个较长时间段的观察和统计分析进行的,而不能仅仅看一两天的数据,建议至少两周或更长的时间。2.1网络容量扩容的原则1.覆盖、容量、质量相互紧密联系,一定程度上能够相互进行转化,在考虑扩容时不要孤立地仅就容量相关指标考虑进行扩容,首先要考虑现有网络的挖潜;在进行网络挖潜时,要兼顾覆盖、质量两大要素。2.无线网络在空口受限情况下,主要的扩容方式有网络资源挖掘(如导频污染/负荷均衡)、小区分裂(加站)、加载频、多频段等方式。其中调整网络减低软切换比例,均衡扇区间的负荷,热点地区的加站都作为优化的手段,本文探讨的是上述优化措施已经实施以后,网络仍旧有扩容需求的情况下,双(多)载波的扩容标准。为了覆盖更广大的区域新增的基站也不在本文的讨论范围内。3.扩容需要在网络资源尚未到达极限前进行,需要结合业务增长的趋势分析提前量进行扩容。4.需结合网络实际的话务模型调整网络规划初期的话务模型,从而调整网络的极限容量,如支持同时激活的用户数等指标。5.EV-DO扩容时,必须考虑全网每个环节的扩容。2.2EVDO话务模型对于CDMA1xEVDORevA网络,典型的数据业务层次模型如下:PacketCallPPPSessionPPPSessionPacketCallPacketCallPPPSessionBasicPacketBasicPacketBasicPacketBasicPacketBasicPacketBasicPacketBasicPacketPPPTimerorforeveror用户主动拆线DormantTimerDormantMorePacketCallBasicPacket之间的时延TimeTimeTimeBasicPacketPacketCallPPPSession....一次上网的过程另一次上网的过程另一次上网的过程PPPSession:表示一次上网过程,用户建立PPP连接到断开PPP连接的整个期间;PacketsCall:表示一次数据呼叫,在PPPSession中不连续的业务请求产生的数据呼叫;Packets:表示一次PacketCall中产生多个物理包传送;单载扇最大放号用户数=ThroughputperSector/ThroughputperUser=ThroughputperSector/(UserSpeed*有效数据传输因子)一个典型的EVDORevA网络的用户模型如下:分类所占比例UserSpeed(kbps)有效数据传输因子用户平均流量(kbps)单载扇支持的放号数量个人用户50%1006%6200商务人士25%20020%4030高端及企业用户(SME)20%30040%12010数据业务运营者5%60070%4202.9混合用户100%1905820.7一般经济型用户(普通个人用户)所需的速率为100kbps,体验型用户如商务及高端人士、企业用户期望的速率为200~300kbps,数据业务运营者要求的速率较高,达到600kpbs。有效数据传输因子,指在空口连接中,真正参与调度传输数据的时长占空口连接时长的比例,与用户行为、资费策略和Active态转Dormant定时器时长密切相关,建议采用典型值63%。2.3EVDO空口扩容标准在实际网络中,当1xEVDO单载扇的TCH信道平均时隙占用率、下行吞吐率(吞吐能力)和用户等效平均速率满足如下三个条件时才考虑扩容。A.TCH信道平均时隙占用率70%;B.单载扇下行吞吐率1Mbps;C.用户等效平均速率200kbps;其中:TCH信道平均时隙占用率可以直接从华为M2000专业网管中提取;扇区吞吐率表示现网扇区实际所支持的能力,与用户分布、业务类型密切相关,在实际网络中,每载扇的吞吐率通过如下公式计算:扇区吞吐率=(DOFTCH信道前向RLP吞吐量[字节]+DOFTCH信道前向RLP重传吞吐量[字节])*8/(DOTCH信道平均时隙占用率*统计周期)用户等效平均速率=扇区吞吐率/忙时扇区等效平均用户数;忙时扇区等效平均用户数=业务信道连接建立时长/统计周期;3.EVDO多载波扩容频点目前宁波电信CDMA本地网的1x网络采用的基本频点为283,叠加频点为201,个别存在S333高配置1x基站的网络,使用的第二叠加频点为242,华为设备区的网络还存在HTC/HDC等方案的应用,采用了第四个频点160为1x网络所用;而EVDO增强网络使用的基本频点是37,建议后续EVDO扩容,统一使用78作为DO叠加频点,暂时预留119频点为后期网络需要而分配使用,这样做到1x与EVDO频点的隔频使用,降低EVDO对1x的影响。但是由于EVDO的叠加频点78和基本频点37邻频,理论上容量会有一定牺牲。可参看下表了解频点使用情况。表3-1CDMA800M频段频点信息表No.1234567网络CDMA1xCDMA1xCDMA1xCDMA1x-1xEVDO1xEVDO频点2832012421601197837频点应用1x基本频点1x叠加频点1x叠加频点HTC/HDC频点预留DO叠加频点DO基本频点4.EVDO多载波扩容策略4.1EVDO多载波扩容方式EVDO增强网络的扩容策略与1x网络相近,大范围成片区域的基站双(多)载波扩容是首选方案,这样能够较好地保证扩容基站区域内的DO用户使用感受,同时又不降低网络性能;基于某些高话务负荷基站和周边基站的小范围区域双(多)载波扩容是次选方案,由于单载波与多载波边界的大量存在,对边界用户的服务质量会有一定的影响。图1、图2给出了两种典型的双(多)载频扩容示意图。一种是大范围成片的区域扩容为双载频,而外围其它话务稀疏区域仍旧只有基本载频;另一种是个别高话务基站和周边基站扩容为双载频,其它绝大部分区域仍然只有基本载频覆盖。图-1大范围区域(蓝色)扩容为DO双载频,其它基站(红色)仍只有DO基本载频BTS1BTS2F1/F2