一元二次方程应用题专题讲练_(1)[1]

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

.复习回顾:1、列一元二次方程解应用题的一般步骤?①审题②设出未知数③列方程④解方程⑤检验⑥答数字问题1、两个数的差等于4,积等于45,求这两个数.快乐学习1得根据题意设其中一个数为解,,:x.454xx.04542xx整理得.9,521xx解得.5494,9454xx或.5,99,5:或这两个数为答数字问题2、一个两位数,它的十位数字比个位数字小3,而它的个位数字的平方恰好等于这个两位数.求这个两位数.快乐学习2得根据题意为设这两位数的个位数字解,,:x.3102xxx.030112xx整理得.6,521xx解得.3363,2353xx或.36,25:或这个两位数为答数字问题3、有一个两位数,它的十位数字与个位数字的和是5.把这个两位数的十位数字与个位数字互换后得到另一个两位数,两个两位数的积为763.求原来的两位数.快乐学习3得根据题意字为设这个两位数的个位数解,,:x763510510xxxx.0652xx整理得.3,221xx解得.2355,3255xx或.2332:或这两个数为答几何与方程4、将一块正方形的铁皮四角剪去一个边长为4cm的小正方形,做成一个无盖的盒子.已知盒子的容积是400cm3,求原铁皮的边长.快乐学习4得根据题意为设原正方形铁皮的边长解,,:xcm.400)8(42x:解这个方程).,(2;1821舍去不合题意xx,100)8(2x,108x,108x.18:cm原正方形铁皮的边长为答几何与方程快乐学习55、一直角三角形的斜边长7cm,一条直角边比另一条直角边长1cm,求两条直角边长度.得根据题意设一条直角边为解,,:xcm.7)1(222xx:整理得).,(2971;297121舍去不合题意xx.0242xx.2971:x解得.29712971:cmcm和两条直角边分别为答.2971129711x几何与方程6、一块长方形草地的长和宽分别为20cm和15cm,在它的四周外围环绕着宽度相等的小路.已知小路的面积为246cm2,求小路的宽度.快乐学习6得根据题意设小路的宽度解,,:xm.2461525215)220(xx:整理得).,(241;321舍去不合题意xx,01233522xx:解得.3:m小路的宽度为答201515+2x20+2x几何与方程7、如图,在一块长92m,宽60m的矩形耕地上挖三条水渠,水渠的宽度都相等.水渠把耕地分成面积均为885m2的6个矩形小块,水渠应挖多宽.快乐学习7得根据题意设水渠的宽度解,,:xm.885660)292(xx:整理得).,(105;121舍去不合题意xx,01051062xx:解得.1:m水渠的宽度为答8.某汽车在公路上行驶,它的路程s(m)和时间t(s)之间的关系为:s=10t+3t2,那么行驶200m需要多长时间?运动与方程开启智慧得根据题意解,:.2001032tt:整理得).,(10;32021舍去不合题意xx,02001032tt:解得).7.6(320200:ssm约需要行驶答回顾:1、增长率的问题在实际生活普遍存在,有一定的模式(1)naxb其中x为平均增长百分率,a为增长前的量,b为增长n次后的量。2、降低率的问题在实际生活普遍存在,有一定的模式(1)naxb其中x为平均降低百分率,a为降低前的量,b为降低n次后的量。9、甲公司前年缴税40万元,今年缴税48.4万元.该公司缴税的年平均增长率为多少?增长率(降低率)问题开启智慧得根据题意设每年平均增长率为解,,:x.4.48)1(402x:解这个方程).,(01.11%;101.1121舍去不合题意xx,21.1)1(2x,1.1)1(x,1.11x%.10:每年的平均增长率为答10、某公司计划经过两年把某种商品的生产成本降低19%,那么平均每年需降低百分之几?增长率(降低率)问题开启智慧.022500300:2xx整理得得解这个方程,得根据题意分数为设每年平均需降低的百解,,:x%.191)1(2x:解这个方程).,(9.01%;109.0121舍去不合题意xx,81.0)1(2x,9.0)1(x,9.01x%.10:数为每年平均需降低的百分答11、某电冰箱厂每个月的产量都比上个月增长的百分数相同。已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了12000台,求该厂今年产量的月平均增长率为多少?开启智慧增长率(降低率)问题得根据题意均增长率为设该厂今年产量的月平解,,:x.2.115)1(52xx:整理得).,(02.11075%;202.0107521舍去不合题意xx.0625252xx:解得,107550122525x%.20:增长率为该厂今年产量的月平均答12、一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手.这次会议到会的人数是多少?开启智慧美满生活与方程得根据题意设这次到会的人数为解,,:x.6621xx:整理得).,(02231;12223121舍去不合题意xx.01322xx:解得,223125291x.12:人这次到会的人数为答存款问题:利息=本金×利率×时间本息和=本金+利息基本关系12、小明同学将1000元钱存入银行,定期一年后取出500元捐给灾区,剩下的500元和应得的利息又全部按一年定期存入,若存款的年利率保持不变,到期后可得本息约660元,求年利率是多少?开启智慧存款问题得根据题意设这种存款的年利率为解,,:x.660)1](500)1(1000[xx:整理得).,(6.1;1.021舍去不合题意xx.0875502xx:解得%.10:这种存款的年利率为答销售利润问题总利润=每件平均利润×总件数利润=售价-成本基本关系销售问题13、某商场销售一批名牌衬衫,现在平均每天能售出20件,每件盈利40元.为了尽快减少库存,商场决定采取降价措施.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.商场要想平均每天盈利1200元,每件衬衫应降价多少元?源于生活,服务于生活得根据题意元设每件衬衫应降价解,,:x.1200)220)(40(xx.020030:2xx整理得得解这个方程,.10,2021xx.20,:元应降价为了尽快减少库存答.40220,60220xx或14、某商店从厂家以每件21元的价格购进一批商品,若每件商品售价为x元,则每天可卖出(350-10x)件,但物价局限定每件商品加价不能超过进价的20%.商店要想每天赚400元,需要卖出多少年来件商品?每件商品的售价应为多少元?开启智慧销售问题得根据题意元设每件商品的售价应为解,,:x.400)10350)(21(xx.077556:2xx整理得得解这个方程,.31,2521xx.25:元每件商品的售价应为答.,31,2.25%2012131舍去不合题意xx15、某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量.试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个.如果要使产量增加15.2%,那么应种多少棵桃树?开启智慧经济效益与方程得根据题意棵设多种桃树解,,:x.%2.1511000100)21000)(100(xx.0760040:2xx整理得得解这个方程,.380,2021xx.38020:棵棵或应多种桃树答16、某旅行社的一则广告如下:我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元;如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于500元。甲公司分批组织员工到龙湾风景区旅游,现计划用28000元组织第一批员工去旅游,问这次旅游可以安排多少人参加?分析:可设人数为x人(1)根据:“如果人数不超过30人,人均旅游费用为元”旅游费用为元(2)如果人数为30人,则总费用;而现用28000元,所以说明去旅游的人数应。超过30人800800x30×800=24000(3)根据:“如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于500元”a.设旅游的x人,比30人多了多少人?b.人均费用降了多少元?(x-30)人10(x-30)元c.实际人均费用是多少?[800-10(x-30)]元解:设这次旅游可以安排x人参加,因为:30×800=24000<28000;而现用28000元,所以人数应超过30人根据题意得:[800-10(x-30)]·x=28000整理,得:x2-110x+2800=0解这个方程,得:x1=70x2=40当x1=70时,800-10(x-30)=400500不合题意,舍去.当x2=40时,800-10(x-30)=700500∴x=40答:问这次旅游可以安排40人参加.有关“动点”的面积问题”1)关键——以静代动把动的点进行转换,变为线段的长度,2)方法——时间变路程求“动点的运动时间”可以转化为求“动点的运动路程”,也是求线段的长度;由此,学会把动点的问题转化为静点的问题,是解这类问题的关键.3)常找的数量关系——面积,勾股定理,例1:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B移动,点Q从点B开始以2cm/s的速度沿BC边向点C移动,如果P、Q分别从A、B同时出发,几秒后⊿PBQ的面积等于8cm2?BACDQP解:设x秒后⊿PBQ的面积等于8cm2根据题意,得整理,得解这个方程,得12(6)82xx2680xx122,4xx06x所以2秒或4秒后⊿PBQ的面积等于8cm2例2:等腰直角⊿ABC中,AB=BC=8cm,动点P从A点出发,沿AB向B移动,通过点P引平行于BC,AC的直线与AC,BC分别交于R、Q.当AP等于多少厘米时,平行四边形PQCR的面积等于16cm2?QRCBAP21216816044xxxxAPcm2解:设AP=x,则PR=x,PB=8-x根据题意得:x8-x整理得:解这个方程得:答:当时,四边形面积为16cm

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功