过程装备腐蚀与防护案例解析应力腐蚀实例:实例1:北方一条公路下蒸气冷凝回流管原用碳钢制造,由于冷凝液的腐蚀发生破坏,便用304型不锈钢(0Cr18Ni9)管更换。使用不到两年出现泄漏,检查管道外表面发生穿晶型应力腐蚀破裂。答:在北方冬季公路上撒盐作防冻剂,盐渗入土壤使公路两侧的土壤中氯化钠的含量大大提高,而选材者却不了解没有对土壤腐蚀做过分析。就决定更换不锈钢管。将奥氏体不锈钢用在这种含有很多氯化钠的潮湿土壤中,不锈钢肯定表现不佳,也需还不如碳钢呢。防护措施:实例2:某化工厂生产氯化钾的车间,一台SS-800型三足式离心机转鼓突然发生断裂,转鼓材质为1Cr18Ni9Ti。经鉴定为应力腐蚀破裂。(P224)答:在氯化钾生产中选用1cr18Ni9Ti这种奥氏体不锈钢转鼓是不当的。氯化钾溶液是通过离心机转鼓过滤的。氯化钾浓度为28°Bé,氯离子含量远远超过了发生应力腐蚀破裂所需的临界氯离子的浓度,溶液pH值在中性范围内。加之设备间断运行,溶液与空气的氧气能充分接触,这就是奥氏体不锈钢发生应力腐蚀破裂提供特定的氯化物的环境。保护措施:停用期间使之完全浸与水中,与空气隔离;定期冲洗去掉表面氯化物等,尽量减轻发生应力破裂的环境条件,以延长使用寿命,不过,发生这种转鼓断裂飞出的恶性事故可能有一定的偶然性,但这种普通的奥氏体不锈钢用于这种高浓度氯化物环境,即使不发生这种恶性事故,其寿命也不长,因为除应力腐蚀还有,孔蚀,缝隙腐蚀等。实例3:CO2压缩机一段、二段和三段中间冷却器为304L(00Cr19Ni10)型不锈钢制造。投产一年多相继发生泄漏。经检查,裂纹主要发生在高温端水侧管子与管板结合部位。所用冷却水含氯化物0.002%~0.004%。(P225)答:这里考虑奥氏体不锈钢的氯化物溶液中的scc,冷却水中氯化物含量控制很低,但仍然发生了scc破坏。设备为热交换器,结构为管壳式。工艺介质走管程,水走壳程,进行热交换。因此,不锈钢管子外面接触的的介质都是水而不是氯化物溶液。水中所含氯化物只是一种杂质,其含量是很低的。应该不会发生scc的。问题主要发生在氯化物浓缩富集。对管壳式热交换器来说,当壳程走水时,氯化物浓缩主要部位是高温端管子与管板连接部位,即管头。氯化物浓缩原因是气化,浓缩。防护措施:(1)改进管与管板的联接结构,消除缝隙;(2)立式换热器的结构改进,提高壳程水位,使管束完全被水浸没;(3)管板采用不锈钢—碳钢复合板,以碳钢为牺牲阳极。注:换热器中造成氯化物浓缩的原因:缝隙:管与管板连接形成的缝隙区。由于闭塞条件使物质迁移困难,容易形成盐垢,造成氯离子浓度增高。汽化:高温端冷却水强烈汽化,在缝隙区形成水垢使氯化物浓缩。对立式换热器尤为严重。实例5:一高压釜用18-8不锈钢制造,釜外用碳钢夹套通水冷却。冷却水为优质自来水,含氯化物量很低。高压釜进行间歇操作,每次使用后,将夹套中的水排放掉。仅操作了几次,高压釜体外表面上形成大量裂纹。(P228)答:在这个事例中,干湿交替变化造成氯化物浓缩。操作时高压釜外表面被冷却水浸没,停运时夹套中水杯放掉,釜表面只留下一层小水滴。小水滴变干,氯化物就浓缩了。所以尽管冷却水中氯化物含量很低,但高压釜表面中氯化物含量却很高。防护措施:腐蚀疲劳实例实例1:某钢铁厂用于废水处理的间歇反应器为哈氏合金B-2制造,反应器为圆筒形罐体,椭圆形封头,支座为普通结构钢。为避免在哈氏合金本体上异材焊接,在支座与下封头焊接处增设哈氏合金B-2过渡圈(10mm)。介质为蒸汽和1%含氟泥浆水,腐蚀性较强。投产后经常泄漏,经检查,裂缝主要发生在下环缝。(P113)答:该反应器处理腐蚀性较强的物料,同时承受频繁的交变应力作用,特别是下环缝,不仅要承受工作应力和热应力,而且还有搅拌泥浆所引起的离心力,以及频繁开停车产生的交变应力。但哈氏合金B-2是一种耐蚀性能优良的镍基合金,成分为00Ni70Mo28,对所有浓度和温度的纯盐酸,哈氏合金B-2的腐蚀速度都很小,所以,造成反应器严重腐蚀的主要原因是设备结构设计不合理。设计的封头直边太窄,不符合设计规定,这样,过渡圈与封头连接的焊缝距下封头环焊缝太近,只有45mm,使原来应力水平就高的下环缝区域又增加焊接残余应力,故下环缝应力最高。在交变应力和腐蚀介质共同作用下下环焊缝区发生腐蚀疲劳裂纹。补焊时作业作业条件差,质量难以保证,下环焊缝区域材质越来越恶化,裂纹不断发展,造成频繁泄漏的破坏事故。防护措施:设计时使应力分布尽可能均匀,避免局部应力集中,同时应对焊接结构和焊接工艺做出规定,使焊接残余应力尽可能减小。磨损腐蚀实例:实例1:一条碳钢管道输送98%浓硫酸,原来的流速为0.6m/s,输送时间需1小时。为了缩短输送时间,安装了一台大马力的泵,流速增加到1.52m/s,输送时间只需要15分钟。但管道在不到一周时间内就破坏了。答:对于接触流体的设备来说,流速是一个重要的环境因素,但流速对金属材料腐蚀速度的影响是复杂。当金属的耐腐蚀性是依靠表面膜的保护作用时,如果流速超过了某一个临界值的时候,由于表面膜被破坏就会使腐蚀速度迅速增大。这种局部腐蚀称为磨损腐蚀,它是介质的腐蚀和流体的冲刷的联合作用造成的破坏。流体冲刷使表面膜破坏,露出新鲜金属表面在介质腐蚀作用下发生溶解,形成蚀坑。蚀坑形成识液流更急急乱,湍流又将新生的表面膜破坏,这样子使设备更快穿孔。在选择流速时面临两个方面的因素。一方面,流速较低则管道直径就要较大,(对一定的流量),设备费用增加。另一方面,流速较高,管道腐蚀速度增大,使用寿命缩短,甚至可能造成更大的事故。这样需要考虑金属材料的临界流速,进行适当的选择。同时,在设计管道系统的工作中,应尽量避免流动方向突然变化,流动截面积突然变化,减小对流动的阻碍,以避免形成湍流和涡旋。实例2:高压聚乙烯车间反应器R-4240及产品冷却器E-4219,在运行过程中出现多处夹套水泄漏现象,2004年10月出现多处夹套水泄漏现象后,停车对夹套泄漏点周边1米范围进行了超探检查,发现夹套进口处内侧的夹套壁厚由δ8mm减小到δ3mm左右,夹套其他位置的壁厚减小至δ7.3mm左右(见图A中夹套泄漏点)。()提示:由于入水处死角内的水过热造成了局部汽化,引起汽蚀冲刷减薄答:根据流体的流动特性,入水口法兰左边的位置就会出现流动死角,而出口处则没有或者说没那么严重。这样死角内的水会停留较长时间而受到反应管的不断加热,由于反应管的温度高达300来度,因此水温很容易就升高而产生汽化,但量不是很大,因此只在入口附近就被大量的水冷却又变成了水,由于由汽态瞬间变回液态引起体积急剧变化,就产生了汽蚀。这就可以说明为什么只是入口处减薄而出口处没有,也可以说明压力足够的地方的减薄现象。反过来再说为什么预热段没有减薄,是因为预热段的水是起加热作用的,死角内的水是不停地被冷却,因此就不会汽化而出现汽蚀减薄。防护方法:在入水法兰口加导流板,将水导入死角,使死角内的水没有滞留孔蚀及缝隙腐蚀实例实例1:某发电厂的冷凝器,用海军黄铜制造时由于进口端流速超过1.52m/s(临界流速),很快发生磨损腐蚀破坏。后来改用蒙乃尔合金制造冷凝器。其临界流速为2.1~2.4m/s,操作人员仍然按海军黄铜的临界流速控制,结果使蒙乃尔合金发生孔蚀。(P170)答:这个腐蚀事例说明,流速并非在任何情况下都是愈小愈好,对于表面生成保护膜的钝态金属材料来说,流速过低容易造成液体停滞,固体物质沉积,从而导致发生孔蚀和缝隙腐蚀。防护措施:将流速控制在合适的范围。实例2:炼油厂的催化裂解装置有64km长的铝制管线,在可能的地段将铝管集成一束,固定在槽钢里,槽钢的翼缘朝上安装。当进行试车时,很多铝管已不能承受压力,经检查发现大量蚀坑,有些已穿孔。(P94)答:用槽钢支撑铝管是一种常见的设计,但这里忽视了这种设计对铝管可能造成的腐蚀影响。翼缘朝上的槽钢很容易积水,也容易积聚各种垃圾和污物,铝管浸在这种含有多种腐蚀性物质的污水中,环境如此恶劣,发生严重的腐蚀和穿孔是在预料之中的。防护措施:在槽钢上开排水孔。实例3:某轻油制氢装置再生塔底重沸器为U型管换热器。管程走低变气167℃,壳程走本菲尔溶液117℃,其中加有V2O5作为缓蚀剂。换热管为1Cr18Ni9Ti不锈钢,管板为16Mn钢。使用两年后,发现管子与管板连接处的缝隙内发生腐蚀。(P97)分析:V2O5是一种钝化剂,能使16Mn钝化,表面生成保护膜。但使用钝化剂的基本要求是:钝化剂的浓度必须超过临界致钝浓度。答:设备结构上的缝隙往往受到严重的腐蚀。在狭缝内发生的缝隙腐蚀。在狭缝内发生的缝隙腐蚀,具有发展速度快,破坏集中等特点,对设备危害极大。本事例中,16Mn钢管板和1Cr18Ni9Ti不锈钢管子外表面都处于本菲尔溶液中。本菲尔溶液主要成分为K2CO3和KHCO3,为高温碱性溶液,其中加有V2O5作为缓蚀剂。V5+是一种钝化剂,能促使16Mn钢钝化,表面生成保护膜,以维持很低的腐蚀速度。使用钝化剂的基本要求是:钝化剂的浓度必须超过临界致钝浓度。因为钝化剂属于氧化剂,通过促进阴极反应使金属表面迅速生成钝化膜而转变为钝态。如果浓度偏低,阴极反应增加程度不足,不仅不能使金属钝化,反而会促使金属的腐蚀,或者造成局部腐蚀。管板与管子之间的缝隙区就正是这种情况。由于闭塞的几何条件,V5+离子的消耗难以得到补充,使缝隙内部V5+离子达不到临界致钝浓度,导致16Mn钢管板发生严重腐蚀。对于不锈钢管子,腐蚀机理则有所不同。因为不锈钢不需要V5+离子来维持其钝态。随着缝隙内金属腐蚀速度增大,金属离子浓度增高而难以迁移到缝外。金属离子发生水解反应,生成固体氢氧化物和氢离子,这不仅使闭塞条件加剧,而且使缝内氯离子浓度升高,致使缝内溶液酸化,pH值下降,加上氯离子迁入,使缝隙内氯离子浓度升高,致使腐蚀条件强化。金属腐蚀速度增大,使金属离子浓度进一步升高,水解反应使pH值进一步降低,形成一个具有自催化特征的腐蚀过程。最终导致不锈钢钝态被破坏,腐蚀速度大大增加。防护措施:管子与管板联接部位缝隙采用背部深孔密封焊。电偶腐蚀实例实例1:某电厂的凝汽器的管束材质为黄铜,管板为碳钢。原来使用河水作冷却水,后来因为缺水,便掺入1/3~2/3的海水。结果凝汽器腐蚀很严重,特别是胀接处。(P199)答:黄铜管束与碳钢管板组成了电偶对,碳钢作为阳极而黄铜作为阴极。由于黄铜管束面积比碳钢管板大的多,这又是一个小阳极大阴极的组合,因而管板可能遭到电偶腐蚀。本事例要说明的因素是电解质的导电性。在使用河水作为冷却水时电偶腐蚀问题并不明显,没有引起注意;而在河水中掺入海水后电偶腐蚀的问题突出了。这是因为河水的电阻率大,导电性不好,而海水的导电性很好。腐蚀电池的电流回路包括溶液的欧姆电阻,欧姆电阻大则电池工作阻力大,腐蚀电流小。海水电阻率小,腐蚀电池电流回路的欧姆电阻小,因而阳极碳钢管板的电偶腐蚀大大加剧。不过,在腐蚀微电池的情况,介质导电性的影响并不是很大,因为微阳极和微阴极尺寸小,电流回路短,欧姆电阻在总阻力中所占比例小。而电偶腐蚀电池属于宏观腐蚀电池,电流回路长,欧姆电阻的作用也就增大了。防护措施:实例2:某啤酒厂的大啤酒罐,用碳钢制造,表面涂覆防腐涂料,用了20年。为了解决罐底涂料层容易损坏的问题,新造贮罐采用了不锈钢板作罐底,筒体仍用碳钢。认为不锈钢完全耐蚀就没有涂覆涂料。几个月后,碳钢罐壁靠近不锈钢的一条窄带内发生大量蚀孔泄漏。(P202)答:碳钢罐壁和不锈钢罐底组成了电偶腐蚀电池,碳钢作为阳极,可能发生加速腐蚀破坏。这里的失误是:碳钢罐壁表面涂覆了涂料,而不锈钢罐底表面没有涂覆涂料。如果当初在不锈钢罐底也涂漆的话,碳钢罐壁是不会发生这么迅速的腐蚀破坏的。涂料层由于薄,很难避免空隙。空隙中裸露出的碳钢变成为小小的阳极区;而罐底不锈钢作为很大阴极,根据阳极对阳极的面积比估计,空隙内碳钢的腐蚀率可达到25mm/a,难怪在几个月之内将碳钢罐壁出了很多小孔。防护措施:碳钢和不锈