张益唐:天才的证明

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

张益唐:天才的证明原作:AlecWilkinson编译:潘颖陈晓雪接受《纽约客》专访时,张益唐59岁。仅仅两年前,他不过是个美国非一流大学的普通讲师,只发表过两篇论文,没有研究经费,曾有近十年的时间找不到学术职位,“流浪”美国各州,不时借住朋友家安身。2013年5月,他因出色地证明了一个关于素数分布的“里程碑式的定理”而蜚声全球。英国著名数学家哈代说,数学比起其他技艺和科学来,更像是“年轻人的游戏”,没有哪一个重大成就是50岁之后提出来的。然而张益唐用天才般的工作证明:年龄、职位、论文统统不是登顶的“标配”。2月2日,《纽约客》杂志正式刊发特约撰稿人亚历克·威尔金森(AlecWilkinson)专访张益唐的长文。《赛先生》求教一流数论专家,补正部分内容,力求准确编译,以飨国内读者。华人数学家张益唐。PeterBohler/图张益唐证明了什么张益唐所做的工作通常被称作“素数间的有界距离”,是“孪生素数”猜想证明的弱形式。所谓“素数”,又称“质数”,是指只能被1和它本身整除的数字,例如:2、3、5、7等等。但随着数字增大,素数在数轴上的分布越来越稀疏。想像一条数轴,普通数字是绿色的,素数是红色的。轴线开始时有许多红色的数字:2、3、5、7、11、13、17、19、23、29、31、41、43和47,它们都是小于50的素数。在1-100之间有25个素数,1到1000之间有168个素数,1到100万之间有78498个素数。素数越来越大时,它们变得越来越稀少,素数与素数间的平均距离越来越大。那么,相邻两个素数之间的距离是否是有限的呢?特别是当数字趋于无穷大时,一个数字的位数之多需要一本书的厚度才能写下,此时是否还能找到相邻的两个素数呢?没有一个方程式可以预言素数的分布特征——它们看起来非常随机。欧几里得在公元前300年证明存在无穷多个素数,但并没有证明两个素数之间的距离可能是多远。他曾大胆猜想:存在无穷多对之差为2的素数。由于人们把这种素数对称为“孪生素数”,如(3,5),(11,13),因此这一猜想被称作“孪生素数猜想”。1849年,法国数学家阿尔方·波利尼亚克提出了更一般的猜想(即“波利尼亚克猜想”):对所有正整数k,存在无穷多个素数对(p,p+2k)。k=1时就是孪生素数猜想,而k等于其他正整数时就称为弱孪生素数猜想。1900年,德国数学家大卫·希尔伯特在巴黎举行的第2届国际数学家大会上发表题为《数学问题》的著名讲演。他根据过去特别是19世纪数学的研究成果和发展趋势,提出了23个最重要的数学问题(通称“希尔伯特问题”);孪生素数猜想是希尔伯特问题的第8个的一部分(和“孪生素数猜想”一起被提出的,是著名的“哥德巴赫猜想”和“黎曼猜想”)。张益唐的论文《素数间的有界距离》就是“孪生素数猜想”的弱化版,他证明了在数字趋于无穷大的过程中,存在无穷多个之差小于7000万的素数对。此前最接近证明孪生素数猜想的一次努力,是圣何塞州立大学的教授丹尼尔·戈德斯通(DanielGoldston)、布达佩斯阿尔弗雷德·莱利(AlfrédRényi)数学研究所研究员平兹(JánosPintz)和伊斯坦布尔海峡大学的伊尔迪里姆(CemYildirim)教授于2005年共同开展的一项工作。不过,一直到2011年,关于孪生素数猜想的研究仍没有取得任何进展。Goldston认为,他在有生之年可能都看不到答案,“我曾以为解开这个难题是不可能的了。”尽管张益唐得到的7000万这个结果看起来与2还有很大差距,但国际数学界公认这是一项伟大的成就。英国《自然》杂志称张益唐的工作为一个“重要的里程碑”。美国数学家丹尼尔·戈德斯坦说:“从7000万到2的距离相比从无穷大到7000万的距离来说是微不足道的。”他认为,每缩小一段范围,都是在获得终极答案(k=1)道路上的一个脚印。“你必须想像这完全是从无到有,”麻省大学波士顿分校的数学系主任埃里克·格林贝格(EricGrinberg)说。“我们确实不知道。这就像我们以为宇宙无限大,没有界限,却发现它在某个地方存在终点。”想象有一把度量绿色与红色数字的尺子。张益唐选择了一把长度为7000万的尺子,因为这么大的数字更容易证明他的猜想。(如果他已能证明孪生素数猜想,这把尺子的长度就是2。)我们可以拿这把尺子沿数轴移动,无数次地将两个素数圈起来。但圈住无穷多个数不一定就是圈住了所有的数,因为有一些情况,比如有无穷多个数是偶数,但还有无穷多个数是奇数。同样道理,这把尺子也能沿着数轴移动无数次时,但圈不到两个素数。从张益唐的结果来看,他的推导是成立的,存在无穷多个之差小于7000万的素数对。接受《纽约客》采访的一位数学家解释说,这是根据鸽巢原理推出的。假设有7000万个鸽巢和无穷多只鸽子,每只鸽子代表一个素数对。把之差为2的素数对(鸽子)放进一个鸽巢,之差为3的放进另一个鸽巢,以此类推,把所有间隔不同的素数对(鸽子)都放进一个鸽巢。最后,会有放了无穷多只鸽子的鸽巢,但无法知道具体是哪一个鸽巢有无穷多只鸽子,不过至少有一个鸽巢里有无穷多只鸽子。引来全球数学家开展竞赛发现存在无穷多个素数对的那个最大的素数间隔后,张益唐对找到间隔的最小数并不感兴趣。他觉得这种工作纯粹只是个技术活,一种体力劳动——一位杰出的数学家把这种行为叫做“追赶救护车”。不过,张益唐研究成果面世不到一周,就引来全世界数学家的围观,他们竞相刷新这个最小距离数。围观者当中就有31岁即获得“菲尔茨”奖(数学界的最高荣誉)的著名数学家陶哲轩(TerenceTao,生于澳大利亚的华人家庭),他现在是加州大学洛杉矶分校的教授。他希望建立一个合作项目,让数学家一起工作去寻找更小的数字,而不是“抢夺领先的位置”。他建立的这个项目名为Polymath-8(博学者8号难题),于2013年6月正式启动,持续了大约一年时间。凭借英国一位年轻数学家JamesMaynard的贡献,项目参与者逐渐将无穷多个素数的差缩减到246。但“数字减小的同时也发现一些问题,”陶哲轩说,“需要越来越多的计算机资源——有人为了做一个计算要让一台高性能的计算机运行两周。此外也有些理论上的问题。用现在的方法,我们不可能得到比6(即k=3)更好的数字。因为存在奇偶校正问题,没有人知道如何绕过这个槛。”陶哲轩说:“我们并没有强烈地认为,我们可以把数值减小到2,从而证出孪生素数猜想,但这是段有趣的旅程。”张益唐对数学最重要的贡献张益唐的方法,本质上是筛法,而筛法的一大问题,是所谓的“奇偶性问题”。有学者撰文介绍称,简单来说,如果一个集合中所有数都只有奇数个素因子,那么用传统的筛法无法有效估计这个集合至少有多少元素。而素数组成的集合,恰好属于这种类型。要想打破奇偶性问题的诅咒,可以将合适的新手段引入传统筛法,藉此补上筛法的缺陷。张益唐的出发点——之前提到的Goldston、Pintz和Yildirim的结果——正是这种新思路的成果。当张益唐在办公室被问到当时是如何找到解开问题的钥匙的。他在白色黑板上写下:“Goldston-Pintz-Yildirim”和“Bombieri-Friedlander-Iwaniec”。他说:“第一篇论文是关于有界距离的,第二篇是关于在等差数列中的素数分布的。我把这两篇论文做了比较,加上我自己的创新,这些创新是基于我在图书馆多年阅读而来的。”普林斯顿高等研究院(IAS)教授、2014年沃尔夫奖得主彼得·萨纳克(PeterSarnak)在谈到张益唐是如何取得现在的结果时说:“他所做的事看起来都遥不可及。这个问题在40年前或许毫无希望,但2005年,Goldston-Pintz-Yildirim三人的工作使这个问题有了解决的曙光,让每个人都觉得已经非常接近结果了。但直到2011年,都还没人取得任何进展。Bombieri、Friedlander与Iwaniec(伊万尼克,解析数论大师)做了其他方面的重要研究,但似乎无法将他们的成果与此前Goldston的研究联系起来。因为他们的研究不够灵活——带有某些附加条件。然后张益唐出现了。很多人像使用电脑那样使用定理。他们认为,如果定理是正确的,那很好,我就可以用它。但是你不能使用Bombieri-Friedlander-Iwaniec的工作,因为它不够灵活。你得相信我的话,因为即便对一个认真的数学家来说,这也很难解释。张益唐对技巧理解得足够深刻,所以他才能够修正Bombieri-Friedlander-Iwaniec的工作,跨越这个门槛。这是他对数学最重要的贡献。他将Bombieri-Friedlander-Iwaniec对素数分布的分析技术改进成研究任何种类的素数的工具。始于18世纪的理论因他而得到了进一步发展。”“我们的条件需要放宽,”Iwaniec说,“我们尝试过,但是我们无法去掉这些条件。我们尝试的时间不长,因为失败后你就开始思考是不是存在一些天然的屏障,所以我们放弃了。”当他被问到对张益唐的结果是否感到意外时,Iwaniec说:“张益唐的工作很轰动”,“他的工作是绝无仅有的。谈起数论,有大量的美是(钟表般)精密的。某种程度上,张益唐对解决问题的形势完全心知肚明,即便他独自一人工作,这是他惊喜的原因,随后他就令人惊讶地改进了那些论文中的参数。”张益唐利用的筛法是一种非常复杂的寻找素数的形式。筛法是阿基米德时代的希腊数学家埃拉托色尼(Eratosthenes)发明的。其方法是,比如要找出1000以内的素数,就要写下所有的数字,然后划掉2的倍数,再划掉3的倍数,5的倍数,以此类推,最后剩下素数。在“埃氏筛法”后,有一些数学家陆陆续续做过一些改进。而张益唐使用的筛法不同于别人用过的筛法。随着素数间隔的增大,先前的筛法网出的素数对的间隙越来越大,因为他们用来估计的不等式参数不精确。Goldston-Pintz-Yildirim三人用先前的筛法已经证明,存在无穷多个素数对,它们之间的距离总是小于连续素数的平均距离,但不能确定这个距离是多少。张益唐部分成功地精细化了筛法的选择性。部分孪生素数。灵感来临的刹那张益唐曾经在素数的有界距离问题上埋头苦干了三两年而一无所获。他说那时看不到任何希望。“我一直在想,解决问题的大门在哪。”张益唐说:“历史上许多数学家相信这个问题是能解决的,但他们都没找到门路。我尝试过几种办法后,开始有点担心这个问题没有解决的办法。”“你那时沮丧吗?”“我觉得很疲倦。”他说:“但很多时候我很平静。我喜欢散步时思考,这就是我的工作办法。我妻子来看我时会问我在做什么,我回答她说,我的工作就是思考(I’mworking,I’mthinking)。”然而转机出现了。2012年7月3日下午,灵感突然而至,只有5-10分钟的时间,解决问题的大门向他敞开了。彼时,张益唐正在科罗拉多州普韦布洛的朋友指挥家齐光(JacobChi,华人指挥家)家中做客。齐光是科罗拉多州立大学普韦布洛分校的音乐教授。几个月之前,齐光请张益唐来家兑现他早前承诺教齐光儿子朱利尔斯(Julius)微积分的承诺,因为Julius那时正要升入高中。就这样,张益唐在齐光家中住了一个月。每天早上,他教Julius大约一小时数学。“他没有固定的教程,”Julius说,“所有东西都在他脑子里。他甚至连电话号码本都没有,所有人的电话他都记得。”张益唐来科罗拉多前在数学上一筹莫展,本打算休息一下,所以没带任何书本。7月3日那天,他在齐光家的后院里转悠。“我们住在山里,有时候会有梅花鹿来我的院子,他当时抽着烟等着看是否会有鹿来”齐光说。“那天没等来鹿,我就像往常一样边走边想事。”张益唐说,他就这么漫无目的地走,大约转悠了半个小时。数学家雅克·阿达玛(JacquesHadamard)在1945年出版的著作《数学领域的发明心理学》里引用另一位数学家的话说:“通常当我独处的时候,我会发现自己进入了另一个世界。有关数的灵感似乎萌发了出来。一瞬间,各种问题的答案都出现在眼前。”在齐光家的后院,张益唐经历的正是与此相仿的一番体验。“我明白了数字、方程一类的东西,虽然很难说清到底是什么。”张益唐说,“有时候感觉非

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功