求一个事件发生的概率一般通过大量试验,统计频率去估计概率,但工作量太大,结果有摆动性,有的还具有破坏性。因此需建立一个理想的数学模型来解决相关问题。古典概型即是这样的一个模型。用它可直接计算概率,通过下列实例概括古典概型的定义:1、掷一枚均匀的硬币,求事件“正面向上”的概率;2、掷一枚骰子,求事件“出现点数为偶数”的概率。上述试验中可能出现的每一个基本结果称为基本事件。基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。“1点”“2点”“3点”“4点”“5点”“6点”“正面朝上”“反面朝上”试验结果质地均匀的骰子试验二质地均匀的硬币试验一结果关系试验材料两种随机事件的可能性相等,即它们的概率都是12六种随机事件的可能性相等,即它们的概率都是16例1从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?{,}Aab{,}Bac{,}Cad{,}Dbc{,}Ebd{,}Fcd解:所求的基本事件共有6个:abcdbcdcd树状图分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。我们一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法。观察对比,找出两个模拟试验和例1的共同特点:基本事件有有限个每个基本事件出现的可能性相等A、B、CD、E、F例1“1点”、“2点”“3点”、“4点”“5点”、“6点”试验二“正面朝上”“反面朝上”试验一相同不同2个6个6个经概括总结后得到:(1)试验中所有可能出现的基本事件只有有限个(有限性)(2)每个基本事件出现的可能性相等(等可能性)我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?(2)如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。你认为这是古典概型吗?为什么?因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。实验Ⅰ中,出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”)由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1因此P(“正面朝上”)=P(“反面朝上”)=即1212“出现正面朝上”所包含的基本事件的个数(“出现正面朝上”)==基本事件的总数P在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?进一步地,利用加法公式还可以计算试验Ⅱ中任何一个事件的概率,例如,P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++=即1616361636P“出现偶数点”所包含的基本事件的个数(“出现偶数点”)==基本事件的总数(1)在例1的实验中,出现字母“d”的概率是多少?根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:AAP所包含的基本事件的个数()=基本事件的总数(2)在使用古典概型的概率公式时,应该注意什么?例1从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?{a,b}{a,c}{a,d}{b,c}{b,d}{c,d}(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。归纳:在使用古典概型的概率公式时,应该注意:例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考察的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?10.254P“答对”所包含的基本事件的个数(“答对”)===基本事件的总数(1)在标准化考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?思考(2)假设有20道单选题,如果有一个考生答对了17道题,他是随机选择的可能性大,还是他掌握了一定知识的可能性大?除了画树状图,还有什么方法求基本事件的个数呢?例3同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)列表法一般适用于分两步完成的结果的列举。A41A369P所包含的基本事件的个数()===基本事件的总数(4,1)(3,2)(2,3)(1,4)6543216543211号骰子2号骰子为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?A2A21P所包含的基本事件的个数()==基本事件的总数如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别。这时,所有可能的结果将是:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),所求的概率为思考与探究左右两组骰子所呈现的结果,可以让我们很容易的感受到,这是两个不同的基本事件,因此,在投掷两个骰子的过程中,我们必须对两个骰子加以区分。练习:某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽2次,每次抽1听,检测出不合格产品的概率有多大?AAP所包含的基本事件的个数()=基本事件的总数1.古典概型:我们将具有:(1)试验中所有可能出现的基本事件只有有限个(有限性)(2)每个基本事件出现的可能性相等。(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型。2.古典概型计算任何事件的概率计算公式为:3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数常用的方法是列举法(画树状图和列表),注意做到不重不漏。