:912121.1000842.300072:,。BP(),,4,,。,,。:;;;:TM615:A:1004-9649(2010)09-0075-04:2010-04-01:(1970—),,,,、。E-mail:ydzhanglan@139.com。0,,。,,。,,,,,。1。,,、、、[1-2]。,,,、。,,,。1.1。06:00—19:00。1,2d。1,,。2、3。1~3,。,,:、、、[3]。1.2:Ps=ηSI[1-0.005(t0+25)](1):η;S,m2;I,kW/m2;t0,℃[4]。1Fig.1PoweroutputofsunnydaysELECTRICPOWER43920109Vol.43,No.9Sep.201075435Fig.5Dailyaveragepoweroutput2Fig.2Poweroutputofcloudydays3Fig.3Poweroutputofrainydays4Fig.4Dailypoweroutputandinsolation4。,,。1.3。,。,。5、62008923—927()。,,。,,。22.1BP()BP()[5],。。BP7。,、;[6]。2。2.22.2.16Fig.6Dailyaveragetemperature7BPFig.7TopologicalstructureofBPnetwork76:916-23-1416-19-1416-20-1416-21-1416-22-14R0.22231220.995840.22391280.995900.2229880.995830.2201750.995930.2216950.995881Tab.1Thetestingresultofdifferentnetworkstructure,。,,。,;。4,。2.2.2,16。06:00—19:001414,,16。06:00—19:0014,14。2.2.31614,。,,;,。,,R,1,。1。2116-21-14BP,。2.3,,。,[7],:P*=p-pminpmax-pmin(2):p;pmax,pminp;P*。S(logsig),:f(x)=11+exp(-x),01,。8BP。w1、b1w2、b2。P,a1,a2。3,。BP[8],9。10,A,T,R。910,,R。8BPFig.8ForecastingmodelofBPnetwork9BPFig.9TrainingcurveofresilientBPmethod10Fig.10Linearregressionanalysisbetweenoutputvaluesandtargetvalues77432Tab.2ErrorsofPVsystempowerforecastingresults2,。4,。。:[1]CHAKRABORTYS,WEISSMD,SIMOESMG.Distributedintelligentenergymanagementsystemforasingle-phasehigh-frequencyACmicrogrid[J].IEEETransactionsonIndustrialElectronics,2007,54(1):97-109.[2]YONAA,SENJYUT,FUNABASHIT.Applicationofrecurrentneuralnetworktoshort-term-aheadgeneratingpowerforecastingforphotovoltaicsystem[C]//IEEEPowerEngineeringSocietyGeneralMeeting,Tampa,FL,USA,2007:1-6.[3],,.[J].,2009,24(9):153-158.CHENChang-song,DUANShan-xu,YINJin-jun.Designofphotovoltaicarraypowerforecastingmodelbasedonneutralnetwork[J].TransactionsofChinaElectrotechnicalSociety,2009,24(9):153-158.[4]TSIKALAKISAG,HATZIARGYRIOUND.Centralizedcontrolforoptimizingmicrogridsoperation[J].IEEETransactionsonEnergyConversion,2008,23(1):241-248.[5]MELLITA,ARABAH,KHORISSIN,etal.AnANFIS-basedforecastingforsolarradiationdatafromsunshinedurationandambienttemperature[C]//IEEEPowerEngineeringSocietyGeneralMeeting,Tampa,FL,USA,2007:7-12.[6]YONAA,SENJYUT,FUNABASHIT,etal.Applicationofneuralnetworktoone-day-ahead24hoursgeneratingpowerforecastingforphotovoltaicsystem[C]//IntelligentSystemsApplicationstoPowerSystems,TokiMesse,Niigata,Japan,2007:1-6.[7],.[J].,2008,41(2):74-78.LIRan,LIGuang-min.Photovoltaicpowergenerationoutputforecastingbasedonsupportvectormachineregressiontechnique[J].ElectricPower,2008,41(2):74-78.[8],.MATLAB[M].:,2004.ZHOUKai-li,KANGYao-hong.NeuralnetworkmodelandMATLABemulationprogramming[M].Beijing:TsinghuaUniversityPress,2004./%19:0006:0007:0008:0009:0010:0011:0012:000.00180.0014-25.10220.00000.03670.00000.0389-6.18900.10410.18070.09990.1802-3.9711-0.30560.70711.00000.74630.93165.5423-6.84060.91000.97056.655813:0014:000.76830.39440.81920.38036.6283-3.590815:0016:0017:0018:000.58500.32990.21010.04660.58540.34860.21310.05430.06085.67011.418316.5725PhotovoltaicsystempowerforecastingbasedonneutralnetworksZHANGLan1,ZHANGYan-xia2,GUOChang-min1,ZHAOJie21.BeijingNewTechnologiesforEnergyResearchandDevelopmentCenter,YunnanPowerGridCorporation,Beijing100084,China;2.KeyLaboratoryofPowerSystemSimulationandControlofMinistryofEducation,TianjinUniversity,Tianjin300072,ChinaAbstract:Thecharacteristicsofaphotovoltaic(PV)systemandvariousfactorsthataffectthepowergenerationofaPVsystemwereanalyzed.AndthemodelofthePVsystempowerforecastingwasestablishedbasedonneuralnetworks.Inthemodel,thethree-layerbackpropagation(BP)networkmodelwasappliedforitspowerfulabilityofnonlinearmappingandgeneralization.Fourseason-forecastingsubmodelswereestablished.ThehistoricalpowerdataofaPVsystemwasclassifiedindifferentweatherconditionsandputintotheneuralnetworksto-getherwiththeweatherconditions.Therefore,theneuralnetworkscouldbetrainedforthepowerforecasting.Theresultsshowthatthismodelhasahighaccuracy,andcanprovideaneffectiveandfeasiblewaytoforecastthePVsystempoweroutput.Keywords:photovoltaicsystem;powerforecasting;neutralnetwork;weatherconditionimpact78