教你解好中考数学压轴题----解题方法指导及典型例题分析-新人教

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1教你解好中考数学压轴题————解题方法指导及典型例题分析数学综合性试题常常是中考试卷中的把关题和压轴题,在中考中举足轻重,中考的区分层次和选拔使命主要靠这类题型来完成预设目标。目前的中考综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题。综合题是中考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创造能力等特点。综合题从题设到结论,从题型到内容,条件隐蔽,变化多样,因此就决定了审题思考的复杂性和解题设计的多样性,杂审题思考中,要把握好解题结果的终极目标和每一步骤分享目标;提高概念把握的准确性和预算的准确性;注意题设条件的隐含性。审题这第一步,不要怕慢,其实快中有慢,解题方向明确,解题手段合理,这是提高解题速度和准确性的前提和保证。综合题具有知识容量大,解题审题时应考虑多种解题思路,注意思路的选择和运算方法的选择,注意数学思想方法的运用。(1)把抽象问题具体化:包括抽象函数用具有相同性质的具体函数作为代表来研究,字母用常数来代表,即把题目中所涉及的各种概念或概念之间的关系具体明确,有时可画表格或图形,以便于把一般原理、一般规律应用到具体的解题过程中去。(2)把复杂问题简单化:把综合问题分解为与各相关知识性联系的简单问题,把复杂的形式转化为简单的形式。解好数学综合题必须具备:(1)语言转换能力:每个数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成。解综合题往往需要较强的语言转换能力,还需要有把普通语言转换成数学语言的能力。(2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。(3)数形转换能力:解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数和几何的结合上找出解题思路。数形结合、分类讨论、方程函数的数学思想在数学综合题中得到充分体现,在综合性试二、思路清晰,思维严谨一、把好审题关三、提高转化能力四、在探索中固本,在探索中求新2题中成为支撑试题的核心。充分利用几何图形的位置、形状和大小变化,注重几何元素之间的函数关系式的建立;把几何图形适当放到直角坐标中,回答相关问题:还要注意几乎图形的元素与方程根的关系等等,这样的探索过程是固本,是求新,是中考数学复习的生命力的体现。下面用两道比较典型的中考压轴题来予以解析和说明例题1:如图,抛物线y=-x2+(m+2)x-3(m-1)交x轴于点A、B(A在B的右边),直线y=(m+1)x-3经过点A.(1)求抛物线和直线的解析式.(2)直线y=kx(k0)交直线y=(m+1)x-3于点P,交抛物线y=-x2+(m+2)x-3(m-1)于点M,过M点作x轴的垂线,垂足为D,交直线y=(m+1)x-3于点N.问:ΔPMN能否成为等腰三角形,若能,求k的值:若不能,请说明理由.∵[解](1)∵抛物线y=-x2+(m+2)x-3(m-1)交x轴于点A、B.当y=0,即-x2+(m+2)x-3(m-1)=0,解得x1=m-1,x2=3,∴A(3,0),B(m-1,0)∵直线y=(m+1)x-3过点A,∴3(m+1)x-3=0,∴m=0∴抛物线和直线的解析式分别为y=-x2+2x+3和y=x-3(2)设直线y=x-3交y轴于点C,∴C(0,-3),A(3,0)∴OC=OA∴∠OAC=∠NAD=45°∵MN⊥x轴,∴∠PMN=45°若△PMN为等腰三角形,且k0,则PN=PM或PN=MN。当PN=PM时,则∠PNM=∠PMN=45°∵∠ODM=90°∴OD=DM,设M的坐标为(m,-m)∴-m=km,即k=-1当PN=MN时,∵MN∥OC∴OCMNPCPN∠ACO=∠PNM=45°∴PC=OC=3过点P作PH垂直y轴于点H。∴PH=CP=sin45°=3×22=223本题第(2)小题涉及了许多数学思想方法,综合性较强,分类讨论与数形结合是解决本题的关键本题第(1)小题运用到了方程思想3CH=PH=223,OH=3-223∴P(223,3-223)又点P在直线y=kx上,∴223-3=223kk=21综上,k=-1或k=21例题2如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=6,BC=9,53cosC;P是边BC上的一个动点(不与点B重合),PQ⊥DP,交边AB于点Q,且点Q不与点B重合.(1)求AB的长;(2)设PC=x,BQ=y,求y与x的函数解析式,并写出它的定义域;(3)在点P的移动过程中,能否使∠PDQ的正切值等于2?如果能,请求出此时BQ的值;如果不能,请说明理由.[解]:过点D作DH⊥BC,垂足为点H.(1)∵AB⊥BC,DH⊥BC,∴AB∥DH.∵AD∥BC,∴四边形ABHD是矩形.∴BH=AD=6,AB=DH.∵BC=9,∴CH=3.∵53cosC,∴CD=5.∴AB=DH=4.(2)∵PQ⊥DP,∴∠BPQ+∠DPH=90°.∵∠BPQ+∠BQP=90°,∴∠DPH=∠BQP.∴Rt△DPH∽Rt△PQB.∴DHPHBPBQ,即439xxy.∴4)3)(9(xxy,即y与x的函数解析式为4273412xxy.定义域为3x9.ASBSCSDSPSQS4(3)要使tg∠PDQ=2,即要使2PDPQ.由Rt△DPH∽Rt△PQB,可得2PDPQDHBP.∵DH=4,而BP=BC-CP=9-x6,∴23DHBP,即∠PDQ的正切值不能等于2.本题需要学生拥有一种探索问题的精神来判断和验证提设的结论成立与否

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功