1.1_探索勾股定理_获奖课件1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

假如我们一旦和外星人见面,该使用什么语言呢?使用“符号语言”与外星人联系是最经济和最有效的,外星人也最可能使用这种语言,并且最可能是数学语言。中国数学家华罗庚认为,我们可以用两个图形作为与外星人交谈的媒介,一个是“数”,另一个是“数形关系”(勾股定理)。因为这种自然图形所具备的“数形关系”在整个宇宙中是普遍的。探索勾股定理同学们,在我们美丽的地球王国上,原始森林,参天古树带给我们神秘的遐想;绿树成荫,微风习习,给我们以美的享受。你知道吗?在古老的数学王国,有一种树木它很奇妙,生长速度大的惊人,它是什么呢?下面让我们带着这个疑问一同到数学王国去欣赏吧!勾股树1勾股树2图1(1)ACBacb图1(2)1.在图1(2)中,∆ABC是直角三角形,∠ACB=90°。(1)如果每个小方格子都是边长为1的正方形,那么Rt∆ABC的三边AC,BC,AB的长各是多少?以AC,BC,AB为边的三个正方形的面积各是多少?这些面积之间具有怎样的等量关系?(2)如果这个直角三角形的三边长分别是a,b,c,那么可以怎样用a,b,c把图中三个正方形面积之间的关系表示出来呢?2.图2(1)是用大小相同的两种颜色的正方形瓷砖铺成的地面。(1)图2(1)中用白色框标出的三个正方形,他们的面积之间具有怎样的等量关系?图2(1)ABC图2(2)(2)根据图2(2),你能说出正方形面积之间的等量关系反映了Rt∆ABC三边之间怎样的关系吗?把它写出来。动手做:用尺规做直角三角形ABC,使∠C=90°,AC=3cmBC=4cm.动手量:如果一个直角三角形的两直角边的长分别是3cm和4cm,则它的斜边长是多少?动手算:3、4、5各自的平方有什么关系?动脑猜:任意直角三角形两直角边的平方和都等于斜边的平方吗?222543(5cm)在准备好的方格纸上,分别画三个顶点都在格点上且两直角边分别为6和8,5和12,9和12的直角三角形,并测量出这三个直角三角形的斜边长,然后验证你的猜想!abc168251239121513102c22ba225100169225169100cab1、拿出准备好的四个全等的直角三角形(设直角三角形的两条直角边分别为a,b,斜边c);2、你能用这四个直角三角形拼成一个正方形吗?拼一拼试试看3、你拼的正方形中是否含有以斜边c的正形?4、你能否就你拼出的图说明a2+b2=c2?cabcabcabcab∵c2==b2-2ab+a2+2ab=a2+b2∴a2+b2=c2大正方形的面积可以表示为;也可以表示为c2该图2002年8月在北京召开的国际数学家大会的会标示意图,取材于我国古代数学著作《勾股圆方图》。abab214)(2证明1:abab214)(2cabcabcabcab∵(a+b)2=a2+2ab+b2=2ab+c2∴a2+b2=c2大正方形的面积可以表示为;也可以表示为(a+b)224abC2证明2:24abC2abcbac∵S梯形ABCD=12a+b2=12(a2+2ab+b2)又∵S梯形ABCD=SAED+SEBC+SCED=12ab+12ba+12c2=12(2ab+c2)比较上面二式得c2=a2+b2ABCDE1881年,伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统证法”.证明3:你能只用这两个直角三角形说明a2+b2=c2吗?勾股定理(gou-gutheorem)如果直角三角形两直角边分别为a、b,斜边为c,那么a2+b2=c2即:直角三角形两直角边的平方和等于斜边的平方.abc勾股弦在西方又称毕达哥拉斯定理!勾股勾股弦我国早在三千多年就知道了这个定理,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”,我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.因此就把这一定理称为勾股定理.辉煌发现《周髀算经》毕达哥拉斯商高数学史话《勾股圆方图》1、如图,一个高3米,宽4米的大门,需在相对角的顶点间加一个加固木条,则木条的长为()A.3米B.4米C.5米D.6米C34CBA1.基础练习之出谋划策3、在波平如静的湖面上,有一朵美丽的红莲,它高出水面1米,一阵大风吹过,红莲被吹至一边,花朵齐及水面,如果知道红莲移动的水平距离为2米,问这里水深多少?BCAH12?┓xx2+22=(x+1)22.回归生活之学以致用如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。ABC106(1)求梯子上端A到墙的底端B的距离AB。(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?A1C123.巩固提高之灵活运用一个长方形零件(如图),根据所给的尺寸(单位mm),求两孔中心A、B之间的距离.AB901604040C解:过A作铅垂线,过B作水平线,两线交于点C,则∠ACB=90°,AC=90-40=50(mm)BC=160-40=120(mm)由勾股定理有:AB2=AC2+BC2=502+1202=16900(mm2)∵AB>0,∴AB=130(mm)答:两孔中心A,B的距离为130mm.4.应用知识之学海无涯谈谈你的收获!1.这节课你的收获是什么?2.理解“勾股定理”应该注意什么问题?3.你觉得“勾股定理”有用吗?要养成用数学的思维去解读世界的习惯。只有不断的思考,才会有新的发现;只有量的变化,才会有质的进步。其实数学在我们的生活中无处不在,只要你是个有心人,就一定会发现在我们的身边,我们的眼前,还有很多象“勾股定理”那样的知识等待我们去探索,等待我们去发现……教师寄语1.完成课本习题1、2、3(必做)2.课后小实验:如图,分别以直角三角形的三边为直径作三个半圆,这三个半圆的面积之间有什么关系?为什么?(必做)3.做一棵奇妙的勾股树(选做)作业快餐:

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功