12010浙江省大学生高等数学(微积分)竞赛试题(工科类)一、计算题(每小题14分,满分70分)1.求极限111lim(1)2nnnnnnnn2.计算+22122dxxxx3.设ABC为锐角三角形,求sinsinsincoscoscosABCABC的最大值和最小值。4.已知分段光滑的简单闭曲线(约当曲线)落在平面:10axbycz上,设在上围成的面积为A,求bzcydxcxazdyaybxdzaxbycz,其中n与的方向成右手系。5.设f连续,满足220expxfxxxtftdt,求131ff的值。二、(满分20分)定义数列na如下:,,max,211011dxxaaann,4,3,2n,求nnalim。三、(满分20分)设有圆盘随着时间t的变化,圆盘中心沿曲线2:cos,sin,(0)Lxtytztt向空间移动,且圆盘面的法向与L的切向一致。若圆盘半径r(t)随时间改变,有23)(ttr,求在时间段21,0内圆盘所扫过的空间体积。四、(满分20)证明:当0x,221expexp22xtxdtx五、(满分20分)证明:.2,0,3sin2tan222xxxx22010浙江省大学生高等数学(微积分)竞赛试题评析(工科类)一、计算题:1.解:原极限=112210.511lim121nnnnnnnenn2.解:22221121235122122xxxxxxxx221ln1arctanln22arctan15xxxxx原积分=253.解:记,sinsinsincoscoscosfBCBCBCBCBC,coscossinsin0BfBCBCBBCB,coscossinsin0CfBCBCCBCCcossincossin/2BBCCBCBC或舍去cos2cossin2sin0/3/3BBBBBACBmax,1.531fBCmin,1fBC4解:原积分=-222sadydzbdzdxcdxdy0.5222222sabcabcds0.5222Aabc5.解:0.5220.50.502exp2xfxfxxtftdtxfxfx1311ff二、解:1111100max,,nnnnaaxdxadxa即{}na单调增且111,2a3设01,na则111000max,1,nnaaxdxdx即{}na有界。可知{}na收敛记其极限为a,有11200max,1/2aaaaxdxadxxdxa1a三、解:0.50.50.52322220001441441/32Vrdsttdtttdt22.51.5211221323253ttdttt21120四、证明:2222expexpexpexp2222xxxtttxxdtxdttdt五、证明:223tan,tan1tan1tan/3xxxxxxxx易知3sin/6xxx.,3sin2tan222xxx42012浙江省高等数学(微积分)竞赛试题工科类一计算题:(每小题14分,满分70分)1.求极限limlog()abxxxx。2.设函数:fRR可导,且,xyR,满足()()fxyfxyxy,求()fx的表达式。3.计算0sindnxxx(n为正整数)。4.计算min,2ddDxyxyxy,D为2yx与2yx围成的平面有界闭区域。5.求曲线33cossinxaya,(0)的形心,其中0a为常数。二、(满分20分)证明:111ln1lnninnni,n。三、(满分20分)设2:uRR所有二阶偏导连续,证明u可表示为(,)()()uxyfxgy的充分必要条件为2uuuuxyxy。四、(满分20)在草地中间有一个底面半径为3米的圆柱形的房子。外墙脚拴一只山羊,已知拴山羊的绳子长为米,外墙底面半径为3米,求山羊能吃到草的草地面积。五、(满分20分)证明11111(1)nnkknkkCkk。学校姓名准考证号专业装订线5工科类答案一、计算题1、若ablimlog()abxxxxlimlog(1)limlog(1)ababaxxxxxxaxa同理,当ab时,limlog()abxxxxb=,所以limlog()abxxxxmax(,)ab=2、解:由假设,0y,有()()1fxyfxxyf可导()1fxx同理()1()1fxxfxx2()/2fxxxc3、解:0sindnxxx011sinsinnnjjjjxxdxxjxdx201sind21212njnxxxjnnnnnn4、解:12,,01,,/2,01/2DxyxyxxDxyxyxx2234,,1/21,,/2,01/2DxyxyxxDxyxyxx原积分12()dd()ddDDyxxxyxyxxy34()dd()ddDDxyxxyxyyxy211102d()dd()dxxxxxyxxyxxyxy21112221002d()dd()2dxxxxxyxxyxxyyy11341456142210021211111()678851232xxxxxxx146720112()24621xxx1111247245322451125332166421179205、解:/0cLLxxdsds,d/dcLLyyss而22d()()3sincosdsxyda200d3sincosdsincos3Lsabada/23242006dsin3sincosd6sincosd5Lysaxaaa0cx25cya6二、证明:显然11111ddjjjjxxxjx2j11122111111d1d1lnnnnjnjjjjxxnjjxx另一方面111111111111dlnnnnjjjjjxnjjnxnn三、证明:()()ufxgy时,显然有xyxyuuuu反之,若xyxyuuuu成立,即有2()/()0xxyxyyuuuuuuu1/()xuufx也即1121ln()d()()()ufxxgyfxgy()()ufxgy四、解:(方法一)以圆柱形旁子的圆心为原点,拴羊点在x轴上3x点,则羊跑最远的曲线在3x的区域内是渐开线即3(cos(/3)sin)xttt3(sin(/3)cos)yttt记在3x山羊能吃到草的草地面积为1S3/30213/20/32d29sind2(3sin(3)cos)(3)cosdSyxtttttttt/32029sindtt/322023(3)sincos(3)cosdtttttt/32029sindtt/322013(3)sin(3)(sin2)2ttttt/32016(3)(sin2)9sind2ttttt/3/3/322000191133cos2sin29cos2d2222tttttttt33/309319sin28349tt所以山羊能吃到草的草地面积333119218S(方法二)山羊能吃到草的草地面积S可表示为一半圆与绳子绕向房子所能到达的面积1S和绳子绕向房子时转过其扫过的面积可近似为扇形22r72/33103/9Sd所以311/18S五、证明:111110011111(1)(1)d(1)dnnnkkkkkkkknnnkkkCCttCttkt1100(1)11(1)ddnntttttt101d1nxxx而11100111dd1nnnkkkttttkt等式成立