基于单片机的热电偶温度测试仪

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

西华大学课程设计说明书基于热电偶的温度测试仪设计摘要:基于热电偶的温度测试仪,该仪器是以AT89C51单片机为核心,采用热电偶冷端补偿专用芯片max6675K对K型热电偶进行冷端补偿并对来自K型热电偶的T-和T+端的输入信号进行放大、AD转换以及数字化处理最后经过spi串口传送给单片机,经单片机运算处理,转换成ROM地址,再通过二次查表法计算出实际温度值并调用相关的程序将此温度值送给4位共阳极LED数码管显示或超量程报警。该热电偶测温仪的软件用C语言编写,采用模块化结构设计。关键词:热电偶,冷端温度补偿,89C51单片机,max6675,数码管显示Abstract:Basedonthermocoupletemperaturemeasurementinstrument,theinstrumentisAT89C51SCMasthecore,thecompensationofthermocouplededicatedchipmax6675KofKtypethermocouplecoldjunctioncompensationandfromtheKtypethermocoupleofT-andT+inputsignalamplification,ADconversionanddigitalprocessingatlastthroughtheSPIserialtransmittedtoSCMthesinglechipcomputer,processing,conversionintoROMaddress,andthenthroughatwolook-uptablemethodtocalculatetheactualtemperaturevalueandcallproceduresrelatedtothetemperaturevaluetoatotalof4anodeLEDdigitaltubedisplayoroverrangealarm.ThethermocoupletemperaturemeasurementinstrumentsoftwareusingClanguage,usesthemodularstructuredesign.Keywords:thermocouplecoldendtemperaturecompensation,single-chipcomputer,89C51,MAX6675,digitaltubedisplay西华大学课程设计说明书目录1前言...............................................................................12整体方案设计.......................................................................32.1方案论证.....................................................................32.2方案比较.....................................................................43单元模块设计.......................................................................53.1单片机控制电路模块...........................................................53.2温度采集转换电路模块.........................................................73.2.1K型热电偶.............................................................73.2.2具有冷端补偿的数字温度转换芯片MAX6675.................................83.3显示电路模块................................................................103.4报警电路模块................................................................124软件设计..........................................................................134.1主程序设计..................................................................135系统技术指标及精度和误差分析......................................................145.1系统仿真结果................................................................145.2误差分析....................................................................146结论..............................................................................167致谢..............................................................................178参考文献..........................................................................18附录1电路原理图....................................................................19附录2源程序代码....................................................................20西华大学课程设计说明书11前言温度是反映物体冷热状态的物理参数,对温度的测量在冶金工业、化工生产、电力工程、机械制造和食品加工、国防、科研等领域中有广泛地应用。在某些特殊的场合对温度的检测速度有很高的要求,例如:在测量汽车发动机吸入空气的温度的时候,就要求热响应时间小于1s;航天飞机的主发动机的温度测量要求0.4s内完成等。因此针对以上问题就有人提出温度快速测量的思想。通常用来测量温度的传感器有热电阻温度传感器、热敏电阻、热电偶、半导体温度传感器等几种。这些常用温度传感器一般的温度测量中可以满足响应速度的问题。工业常用的精度较高的温度传感器有铂热电阻、半导体温度传感器等。铂热电阻具有温度温度测量时至少要几秒钟。所以用温度传感器一般都存在着对气体温度变化响应较慢的问题。在对温度实时性测量要求比较高的系统,运用常用温度测量方法很难测量范围大、重复性好、精度高等特点,但是响应不是很快,特别是在对气体做到对温度的快速测量,对系统的精度影响就很大。在工业过程控制与生产制造领域普遍使用具有较高测温精度及测温范围的热电偶做测温元件。在工业标准热电偶中,K型(镍铬-镍硅)热电偶由于具有价格低廉、输出热电势值较大、热电势与温度的线性关系好、化学稳定性好、复制性好、可在1000℃下长期使用等特点,因而是工业生产制造部门应用最广泛的热电偶元件。但是将热电偶应用在基于单片机的嵌入式系统领域时,却存在着以下几方面的问题[2]。①非线性:热电偶输出热电势与温度之间的关系为非线性关系,因此在应用时必须进行线性化处理。②冷端补偿:热电偶输出的热电势为冷端保持为0℃时与测量端的电势差值,而在实际应用中冷端的温度是随着环境温度而变化的,故需进行冷端补偿。③数字化输出:与嵌入式系统接口必然要采用数字化输出及数字化接口,而作为模拟小信号测温元件的热电偶显然无法直接满足这个要求。在许多热工实验中,往往面临热电偶冷端温度问题,不管是采用恒温补偿法(冰点补偿法)还是电桥补偿法,都会带来实验费用较高、实际的检测系统较复杂.难以达到实时测量、接口转换电路复杂等问题,而随着计算机测控技术在工业生产制造领域的普遍应用,温度参数的微机化测量与控制已成为必然趋势。因此我们必须解决对热电偶测量信号的放大调理、非线性校正、冷端补偿、模数转换、数字输出接口等一系列复杂的问题,以及解决模拟与数字电路硬件设计过程和建表、查表、插值运算等复杂的软件编制过程,以达到使电路简化,成本减少,增加系统可靠性的目的。鉴于上面的分析,本论文主要任务是设计一种基于高精度K型热电偶传感器的快速测温系统。采用带有冷端补偿的温度转换芯片MAX6675、K型热电偶、89C51单片西华大学课程设计说明书2机、数码管等元器件设计出相应温度采集电路、温度转换电路、温度控制电路、超量程报警电路、数码管显示电路。系统用单片机对带有冷端补偿的温度转换芯片MAX6675进行控制,要达到任务书中的技术指标,并对系统进行protuse的调试和仿真试验,使其具有良好的实用性能,能够实现对固提表面、液体和气体温度的高精度快速测量。西华大学课程设计说明书32整体方案设计热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响测量的准确性。在冷端采取一定措施进行补偿以消冷端温度变化造成的影响称为热电偶的冷端补偿。2.1方案论证设计中采用了两个方案,具体的方案见方案一和方案二。方案一:分立元气件冷端补偿方案该方案的热电偶冷端温度补偿器件是由分立元件构成的,其体积大,使用不够方便,而且在改变桥路电源或热电偶类型时需要重新调整电路的元件值。主要包括温度采集电路、信号放大电路、A/D转换电路、热电偶冷端补偿电路、数码管显示电路等。其系统框图如图2.1。图2.1分立元气件冷端补偿方案二:集成电路温度补偿方案采用热电偶冷端补偿专用芯片max6675,max6675温度转换芯片具有冷端温度补偿及对温度进行数字化测量这两项功能[5]。一方面利用内置温度敏感二极管将环境温度转换成补偿电压,另一方面又通过模数转换器将热电势和补偿电压转换为代表温度AD590冷端补偿电路模块单片机模块热电偶转换和放大电路模块分时模数转换LED显示模块热端冷端西华大学课程设计说明书4的数字量,将二者相加后从串行接口输出测量结果,即为实际温度数据。主要包括温度采集电路、max6675温度转换电路、数码管显示电路等。其系统框图如图2.2。图2.2集成电路温度补偿2.2方案比较综合对比以上两种方案,方案一电路复杂,且测量不精确照成误差较大,方案二采用集成温度转换芯片不仅能很好的解决冷端温度补偿及温度数值化问题,并消除由热电偶非线性而造成的测量误差,且精确度高,可实现电路的优化设计。故最后采用方案二。热电偶MAX6675单片机LED数码显示西华大学课程设计说明书53单元模块设计本系统硬件主要由热电偶温度采集电路、MAX6675温度处理电路、89C51单片机控制电路、超量程报警电路和数码管显示电路组成。热电偶采用分度号为K的热电偶,为了减少外界信号的干扰通过双绞线跟MAX6675芯片直接相连接。MAX6675芯片通过SPI串行接口传输数据,采用的89C51单片机对带有冷端补偿的温度转换芯片MAX6675进行控制。本系统设计还具有报警的特点,当所测量的温度低于零摄氏度或者高于400摄氏度时报警电路发出警报。显示电路由89C51单片机通过锁存器对四位共阳数码管控制,数码管工作需要较大的电流采用型号为8550的PNP三极管进行控制,当所测温度在规定范围内时就可以通过数

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功