二次根式和一元二次方程知识点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

二次根式1.二次根式的概念:形如的式子叫做二次根式.2.二次根式的性质:(1)2)(a(a≥0);(2)a0(a≥0);(3))0___()0___()0___(____2aaaa3.二次根式的乘除:计算公式:___(0,0)___(0,0)ababaabb乘法运算:除法运算:4.概念:1.2.最简二次根式:(1)(2)(3)同类二次根式:5.二次根式的加减:(一化,二找,三合并)(1)将每个二次根式化为最简二次根式;(2)找出其中的同类二次根式;(3)合并同类二次根式.6.二次根式化简求值步骤:(1)“一分”:分解因数(因式)、平方数(式);(2)“二移”:根据算术平方根的概念,把根号内的平方数或者平方式移到根号外面;(3)“三化”:化去被开方数中的分母.7.二次根式的混合运算:(1)二次根式的混合运算顺序与实数运算类似,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.(2)对于二次根式混合运算,原来学过的所有运算律、运算法则及乘法公式仍然适用.(3)在二次根式混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.一元二次方程1.一元二次方程:1)一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程.2)一元二次方程的一般形式:)0(02acbxax.它的特征:等式左边是一个关于未知数x的二次多项式,等式右边是零.2ax叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.2.一元二次方程的解法:1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法.直接开平方法适用于解形如bax2)(的一元二次方程.根据平方根的定义可知,ax是b的平方根,当0b时,bax,bax,当b0时,方程没有实数根.2)配方法:配方法的理论根据是完全平方公式222)(2bababa,把公式中的a看做未知数x,并用x代替,则有222)(2bxbbxx.配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式.3)公式法:公式法是用求根公式解一元二次方程的解的方法.一元二次方程)0(02acbxax的求根公式:)04(2422acbaacbbx4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法.分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式.3.一元二次方程根的判别式:一元二次方程)0(02acbxax中,acb42叫做一元二次方程)0(02acbxax的根的判别式,通常用“”来表示,即acb42.1)当△0时,一元二次方程有2个不相等的实数根;2)当△=0时,一元二次方程有2个相同的实数根;3)当△0时,一元二次方程没有实数根.4.韦达定理:如果方程)0(02acbxax的两个实数根是21xx,,那么abxx21,acxx21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.5.一元二次方程的二次函数的关系:其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当y=0的时候就构成了一元二次方程了.那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点,也就是该方程的解了.

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功