8章 RNA的生物合成

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第八章RNA的生物合成RNA的生物合成包括转录和RNA的复制。转录(transcription):以一段DNA的遗传信息为模板,在RNA聚合酶作用下,合成出对应的RNA的过程(DNA指导的RNA合成)。转录产物:mRNA、rRNA、tRNA、小RNA除某些病毒基因组RNA外,绝大多数RNA分子都来自DNA转录的产物。转录研究的主要问题①RNA聚合酶②转录过程③转录后加工④转录的调控①~③是基本内容,④是目前研究的焦点,转录是基因表达的第一步,也是最关键的一步。转录水平的调控是基因调控的核心。基因表达的终产物:①RNA②蛋白质第一节转录一、RNA聚合酶催化的转录过程(E.coli)王镜岩P457图36-21、起始RNA聚合酶结合到DNA双链的特定部位(启动子区即RNA聚合酶识别结合和开始转录的基因中的一段DNA序列),局部解开双螺旋,第一个核苷酸掺入转录起始位点,从此开始RNA链的延伸。在新合成的RNA链的5’末端,通常为pppG或pppA,即合成的第一个底物是GTP或ATP。因此RNA合成方向是5‘-3’。起始过程中,σ因子起关键作用,它能使聚合酶迅速地与DNA的启动子结合,σ亚基与β’结合时,β’亚基的构象有利于核心酶与启动子紧密结合。还常需要一些起始因子参与。正链(有意义链):又叫编码链,5‘-3’。与mRNA序列相同的DNA链。负链(反意义链):模板链,3‘-5’。转录起点是+1,上游是-1。转录的起点核苷酸为+1,起点右边为下游(转录区),用正数表示,起点左侧为上游,用负数表示:-1,-2,-3。2、延长转录起始后,σ亚基释放,离开核心酶,使核心酶的β’亚基构象变化,与DNA模板亲和力下降,在DNA上移动速度加快,使RNA链不断延长。转录起始后,σ亚基便从全酶中解离出来,然后nusA亚基结合到核心酶上,由nusA亚基识别序列。常需要转录因子(DNA转录中协助转录的辅助因子)参与。3、终止RNA聚合酶到达转录终止点(终止子区即基因中提供转录终子信号的DNA序列)时,在终止因子(DNA转录中协助RNA聚合酶识别终止信号的辅助因子)的帮助下,聚合反应停止,RNA链和聚合酶脱离DNA模板链,nusA又被σ亚基所取代。由此形成RNA聚合酶起始复合物与终止复合物两种形式的循环。★RNA转录合成的基本特征①底物:NTP(ATP、GTP、CTP、UTP)②RNA链生长方向:5’→3’③不需引物④需DNA模板,方向是3‘-5’。★转录的起始由DNA上的启动子区控制,转录的终止由DNA上的终止子控制,转录是通过DNA指导的RNA聚合酶来实现的。★RNA的转录,起始于DNA模板的一个特定位点,并在另一位点终止,此转录区域称为一个转录单位。一个转录单位可以是一个基因(真核即真核生物的mRNA为单顺反子),也可以是多个基因(原核即原核生物的mRNA常为多顺反子也有单顺反子)。★基因的转录是有选择性的,细胞不同生长发育阶段和细胞环境条件的改变,将转录不同的基因。★转录与DNA复制的异同:相同:要有模板,新链延伸方向5’→3’,碱基的加入严格遵循碱基配对原则。相异:①复制需要引物,转录不需引物。②转录时,模板DNA的信息全保留,复制时模板信息是半保留。③转录时,RNA聚合酶只有5’→3’聚合作用,无5’→3’及3’→5’外切活性。二、RNA聚合酶1、E.coliRNA聚合酶(原核)E.coli和其它原核细胞只有一种RNA聚合酶,合成各种RNA(mRNA、tRNA、rRNA)。E.coliRNA聚合酶全酶(holoenzyme)分子量46万Da,由六个亚基组成,α2ββ’σω,另有两个Zn2+。不同的细菌,β’、β、α亚基分子量变化不大,σ亚基分子量变化较大,44KD~92KD。σ亚基的功能:无σ亚基的酶叫核心酶,核心酶只能使已开始合成的RNA链延长,而不具备起始合成活性,加入σ亚基后,全酶才具有起始合成RNA的能力,因此,σ亚基称为起始因子。核心酶在DNA上滑动,σ亚基能增加酶与DNA启动子的结合常数,增加停留时间,使聚合酶迅速找到启动子并与之结合,σ亚基本身无催化活性。不同的σ因子识别不同的启动子,从而表达不同的基因。不同的原核生物,都具有相同的核心酶,但σ亚基有所差别,这决定了原核基因表达的选择性。E.coliRNA聚合酶各亚基的大小与功能:亚基亚基数分子量(KD)基因功能β’1160rpoC与模板DNA结合β1150rpoB与核苷酸结合,起始和催化部位。σ170rpoD起始识别因子α237rpoA与DNA上启动子结合ω19----不详一个E.coli细胞中约有7000个RNA聚合酶分子,在任一时刻,大部分聚合酶(5000左右)正在参与RNA的合成,具体数量依生长条件而定。★RNA聚合酶的催化活性:RNA聚合酶以完整的双链DNA为模板,转录时DNA的双链结构部分解开,转录后DNA仍然保持双链的结构。王镜岩P456图36-1RNA聚合酶的活性中心,p584图20-5核心酶覆盖60bp的DNA区域,其中解链部分17bp左右,RNA-DNA杂合链约12bp。纯的RNA聚合酶,在离体条件下可转录双链DNA,但在体内,DNA的两条链中只有一条可用于转录,这可能是由于RNA聚合酶在分离时丢失了σ亚基引起的。解旋和重新螺旋化也是RNA聚合酶的内在特性,在酶的前端解螺旋,在后端以相反方向重新螺旋化,活体状况中,可能还有其它酶活性来帮助调整DNA的拓扑学性质。37℃时,RNA聚合酶的聚合速度可达40~100个核苷酸/秒2、真核生物RNA聚合酶三种细胞核内的RNA聚合酶:RNA聚合酶I转录rRNA,RNA聚合酶II转录mRNA和大多数核内小分子RNA,RNA聚合酶III转录tRNA和其它小分子RNA。这三种RNA聚合酶分子量都在50万左右,亚基数分别为6-15。线粒体和叶绿体RNA聚合酶,它们的结构简单,能转录所有种类的RNA,类似于细菌RNA聚合酶。P589表20-1,王镜岩表36-2真核生物RNA聚合酶的分类、分布及各自的功能动物、植物、昆虫等不同来源的细胞,RNApolⅠ对α-鹅膏蕈碱不敏感,RNApolⅡ对α-鹅膏蕈碱最敏感,可被低浓度的α-鹅膏蕈碱抑制,RNApolⅢ受高浓度的α-鹅膏蕈碱抑制,而酵母、昆虫的RNApolⅢ不受抑制。3、噬菌体T3和T7编码的RNA聚合酶仅为一条分子量11KD的多肽链,这些聚合酶只需要识别噬菌体DNA的少数启动子,并无选择地与其作用,37℃时的聚合速度200nt/秒。三、启动子和转录因子启动子:RNA聚合酶识别、结合并开始转录所必需的一段DNA序列,它不被转录。转录因子:RNA聚合酶在进行转录时,常需要一些辅助因子(蛋白质)参与作用,此类蛋白质统称为转录因子。足迹法和DNA测序法确定启动子的序列结构。P582图20-3;王镜岩p459图36-4(一)原核启动子结构与功能不同的启动子都存在共同的保守序列,包括RNA聚合酶识别位点和结合位点。(1)、-10序列(Pribnow框):解链区在转录起点上游大约-10处,有一个6bp的保守序列TATAAT,称Pribnow框。此段序列出现在-4到-13bp之间,每个位点的保守性在45%-100%。频度:T89A89T50A65A65T100据预测,Pribnow框中,一开始的TA和第6位最保守的T在结合RNA聚合酶时起十分重要的作用。目前认为,Pribnow框决定转录方向。酶在此部位与DNA结合形成稳定的复合物,Pribnow框中DNA序列在转录方向上解开,形成开放型起始结构,它是RNA聚合酶牢固的结合位点,是启动子的关键部位。RNA聚合酶的结合,诱导富含AT的Pribnow框的双链解开,然后进一步扩大成17个核苷酸长度的泡状物,在泡状物中RNA聚合酶从模板链开始转录RNA产物。(2)、-35序列(Sexfamabox):识别区只含-10序列的DNA不能转录,在-10序列上游还有一个保守序列,其中心约在-35位置,称为-35序列,此序列为RNA酶的识别区域。各碱基出现频率如下:T85T83G81A61C69A52,其中TTG十分保守。-35序列的功能:它是原核RNA聚合酶全酶依靠σ因子的初始识别位点。因此,-35序列对RNA聚合酶全酶有很高的亲和性。-35序列的核苷酸结构,在很大程度上决定了启动子的强度,RNA聚合酶易识别强的启动子。-35序列提供RNA聚合酶识别信号,-10序列有助于DNA局部双链解开,启动子结构的不对称性决定了转录的方向。(二)真核启动子真核生物有三种RNA聚合酶:RNA聚合酶I、II、III,分别转录rRNA、mRNA、tRNA和小分子RNA,这三类聚合酶的启动子各有其结构特点。1.RNA聚合酶Ⅰ的启动子主要控制rRNA的合成。RNA聚合酶Ⅰ的启动子由两个元件或控制区组成:1)核心启动子或核心元件位于起点附近,从-45至+20。2)上游控制元件(UCE)位于-187至-107,富含G·C序列。结合了特异因子的UCE,可使单个核心启动子的转录效率提高10~100倍。1、RNA聚合酶Ⅱ的启动子(1)、TATA框(Hogness框):解链区中心在-25至-30,长度7bp左右。碱基频率:T82A97A85A63(T37)A83A50(T37)(全为A-T,少数含有一个G-C对)。此序列功能:使DNA双链解开,并决定转录的起点位置,失去TATA框,转录将可能在许多位点上开始。TATA框的改变或缺失,直接影响DNA与酶的结合程度,会使转录起始点偏移,因此,TATA是绝大多数真核基因正确表达所必需的。由于RNA聚合酶分子有相对固定的空间结构,因此框的结合位点和转录反应催化位点的距离,决定了起始位点的正确选择。启动子特定序列和酶的正确结构,这两者把酶置于一种正确的构象中,决定了识别的正确性和转录起始的正确性。(2)、CAAT框:聚合酶识别结合区中心在-75处,9bp,共有序列GGT(G)CAATCT功能:与RNA聚合酶结合。(3)、GC框:在CAAT框上游,序列GGGCGG,与某些转录因子结合。CAAT和GC框均为上游序列,对转录的起始频率有较大影响。2、RNApolⅢ的启动子RNApolⅢ的启动子常在转录区内部即位于下游,但也有位于上游的。有三种类型,见书p591图20-11。P365图20-5由RNA聚合酶III转录的三个基因的启动子四、终止子和终止因子终止子:提供转录终止信号的一段DNA序列。终止因子:协助RNA聚合酶识别终止子的蛋白质辅助因子。有些终止子的作用可被特异的因子所阻止,使酶越过终止子继续转录,称为通读,这类引起抗终止作用的蛋白质称为抗终止因子。终止子位于已转录的序列中,DNA的终止子可被RNA聚合酶本身或其辅助因子识别。1、大肠杆菌中的两类终止子所有原核生物的终止子在终止点之前都有一个回文结构,它转录出来的RNA可以形成一个颈环式的发荚结构。P586图20-7;王镜岩P465图36-11(1)、不依赖于ρ的终止子(简单终止子)简单终止子除具有发夹结构外,在终止点前有一寡聚U序列,回文对称区通常有一段富含GC的序列。寡聚U序列可能提供信号使RNA聚合酶脱离模板。(2)、依赖ρ的终止子依赖ρ的终止子,必需在ρ因子存在时,才发生终止作用。终止点前无寡聚U序列,回文对称区不富含GC。ρ因子是55KD的蛋白质,可水解三磷酸核苷。2、抗终止作用通读往往发生在强启动子、弱终止子的基因上。抗终止作用常见于某些噬菌体的时序控制。早期基因于后基因之间以终止子相隔开,通过抗终止作用可以打开后基因的表达。λ噬菌体前早期(immediateearly)基因的产物N蛋白就是一种抗终止因子。它与RNA聚合酶作用使其在左右两个终止子处发生通读,从而表达晚早期(delayedearly)基因。晚早期基因的产物Q蛋白也是一种抗终止因子,它能使晚早期基因得以表达。五、转录过程的调节控制基因的表达是受到严格的调节控制的,转录水平的调控是关键的环节,转录调控主要发生在起始和终止阶段。时序调控:生长、发育、分化、时间程序。适应调控:细胞内外环境改变。可位于基因的上游或下游区或内含子

1 / 86
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功