1、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A、(13,13)B、(﹣13,﹣13)C、(14,14)D、(﹣14,﹣14)第1题第6题第9题6、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A、(16,16)B、(44,44)C、(44,16)D、(16,44)9、如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为()A、(14,44)B、(15,44)C、(44,14)D、(44,15)12、在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,﹣3),则经两次跳动后,它不可能跳到的位置是()A、(3,﹣2)B、(4,﹣3)C、(4,﹣2)D、(1,﹣2)13、观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是.14、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为.第14题第15题第17题15、如图,已知Al(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),….则点A2015的坐标为.16、已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4,….依此运动规律,则经过第11次运动后,动点P所在位置P11的坐标是.17、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.18、如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是.点P第2009次跳动至点P2009的坐标是.第18题第19题第20题19、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,0)→(1,0)→(1,1)→(2,2)→(2,1)→(2,0)…根据这个规律探索可得,第100个点的坐标是_________.20、如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是.21、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是.22、电子跳蚤游戏盘为△ABC(如图),AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上P0点,BP0=4,第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规定跳下去,第2008次落点为P2008,则点P2008与A点之间的距离为.24、如图,一个动点在第一象限内及x轴,y轴上运动,在第一分钟,它从原点运动到(1,0),第二分钟,从(1,0)运动到(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,且每分钟运动1个单位长度.当动点所在位置分别是(5,5)时,所经过的时间是分钟,在第1002分钟后,这个动点所在的位置的坐标是.25、如图所示,在平面直角坐标系中,有若干个整数点,其顺序按图中箭头方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探索可得,第102个点的坐标为_________.8、若,则点P(x,y)的位置是()A、在数轴上B、在去掉原点的横轴上C、在纵轴上D、在去掉原点的纵轴上27、设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方案共有种.28、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.答案与评分标准选择题考点:点的坐标。专题:规律型。分析:观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律.解答:解:∵55=4×13+3,∴A55与A3在同一象限,即都在第一象限,根据题中图形中的规律可得:3=4×0+3,A3的坐标为(0+1,0+1),即A3(1,1),;7=4×1+3,A7的坐标为(1+1,1+1),A7(2,2),;11=4×2+3,A11的坐标为(2+1,2+1),A11(3,3);…55=4×13+3,A55(14,14),A55的坐标为(13+1,13+1);故选C.点评:本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置及所在的正方形,然后就可以进一步推得点的坐标.2、(2009•济南)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:1、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);2、g(a,b)=(b,a).如:g(1,3)=(3,1);3、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于()A、(﹣5,﹣3)B、(5,3)C、(5,﹣3)D、(﹣5,3)考点:点的坐标。专题:新定义。分析:先根据题例中所给出点的变换求出h(5,﹣3)=(﹣5,3),再代入所求式子运算f(﹣5,3)即可.解答:解:按照本题的规定可知:h(5,﹣3)=(﹣5,3),则f(﹣5,3)=(5,3),所以f(h(5,﹣3))=(5,3).故选B.点评:本题考查了依据有关规定进行推理运算的能力,解答时注意按照从里向外依次求解,解答这类题往往因对题目中的规定的含义弄不清楚而误选其它选项.3、在坐标平面内,有一点P(a,b),若ab=0,则P点的位置在()A、原点B、x轴上C、y轴D、坐标轴上考点:点的坐标。分析:根据坐标轴上点的的坐标特点解答.解答:解:∵ab=0,∴a=0或b=0,(1)当a=0时,横坐标是0,点在y轴上;(2)当b=0时,纵坐标是0,点在x轴上.故点P在坐标轴上.故选D.点评:本题主要考查了坐标轴上点的的坐标特点,即点在x轴上点的坐标为纵坐标等于0;点在y轴上点的坐标为横坐标等于0.4、点P到x轴的距离为3,到y轴的距离为2,则点P的坐标一定为()A、(3,2)B、(2,3)C、(﹣3,﹣2)D、以上都不对考点:点的坐标。分析:点P到x轴的距离为3,则这一点的纵坐标是3或﹣3;到y轴的距离为2,那么它的横坐标是2或﹣2,从而可确定点P的坐标.解答:解:∵点P到x轴的距离为3,∴点的纵坐标是3或﹣3;∵点P到y轴的距离为2,∴点的横坐标是2或﹣2.∴点P的坐标可能为:(3,2)或(3,﹣2)或(﹣3,2)或(﹣3,﹣2),故选D.点评:本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是到x轴的距离.5、若点P(m,4﹣m)是第二象限的点,则m满足()A、m<0B、m>4C、0<m<4D、m<0或m>4考点:点的坐标。分析:根据点在第二象限的坐标特点解答即可.解答:解:∵点P(m,4﹣m)是第二象限的点,∴m<0,4﹣m>0,∴m<0.故选A.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A、(16,16)B、(44,44)C、(44,16)D、(16,44)考点:点的坐标。专题:规律型。分析:通过观察和归纳要知道所有偶数的平方均在x轴上,且坐标为k,便对应第k2个点,且从k2向上走k个点就转向左边;所有奇数的平方均在y轴上,且坐标为k,便对应第k2个点,且从k2向右走k个点就转向下边,计算可知2008=442+72,从而可求结果.解答:解:由观察及归纳得到,箭头指向x轴的点从左到右依次为:0,3,4,15,16,35,36…我们所关注的是所有偶数的平方均在x轴上,且坐标为k,便对应第k2个点,且从k2向上走k个点就转向左边,如22向上走2便转向;箭头指向y轴的点依次为:0,1,8,9,24,25…我们所关注的是所有奇数的平方均在y轴上,且坐标为k,便对应第k2个点,且从k2向右走k个点就转向下边,如52向右走5便转向;因为2008=442+72,所以先找到(44,0)这是第1936个点,还有72步,向上走44步左转,再走28步到达,距y轴有44﹣28=16个单位,所以第2008秒时质点所在位置的坐标是(16,44).故选D.点评:本题主要考查了学生观察和归纳能力,会从所给的数据和图形中寻求规律进行解题.7、已知点P(3,a﹣1)到两坐标轴的距离相等,则a的值为()A、4B、3C、﹣2D、4或﹣2考点:点的坐标。分析:根据平面直角坐标系内点的坐标的几何意义即可解答.解答:解:∵点P(3,a﹣1)到两坐标轴的距离相等,∴|a﹣1|=3,解得a=4或a=﹣2.故选D.点评:本题主要考查了平面直角坐标系内各象限内点的坐标的符号及点的坐标的几何意义,注意横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.8、若,则点P(x,y)的位置是()A、在数轴上B、在去掉原点的横轴上C、在纵轴上D、在去掉原点的纵轴上考点:点的坐标。分析:根据分式值为0的条件求出y=0,再根据点在x轴上坐标的特点解答.解答:解:∵,x不能为0,∴y=0,∴点P(x,y)的位置是在去掉原点的横轴上.故选B.点评:本题考查了点在x轴上时坐标的特点,特别注意要保证条件中的式子有意义.9、如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为()A、(14,44)B、(15,44)C、(44,14)D、(44,15)考点:点的坐标。专题:规律型。分析:该题显然是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4=20,…,由an﹣an﹣1=2n,则a2﹣a1=2×2,a3﹣a2=2×3,a4﹣a3=2×4,…,a