初一数学七下相交线与平行线所有知识点总结和常考题型练习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

相交线与平行线知识点1、邻补角与对顶角:两直线相交所成的四个角中存在两种不同关系的角,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角∠1与∠2有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠2邻补角∠3与∠4有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线。邻补角互补∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,则一定有∠α=∠β;反之如果∠α=∠β,则∠α与∠β不一定是对顶角.⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.⑷两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。⑸两线四角:经过一点画m条直线,共有m(m-1)对对顶角,共有2m(m-1)对邻补角。2、垂线定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。符号语言记作:如图所示:AB⊥CD,垂足为O.垂直定义有以下两层含义:(1)∵∠AOC=90°(已知),∴AB⊥CD(垂直的定义).(2)∵AB⊥CD(已知),∴∠AOC=90°(垂直的定义).3、垂线性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。4、垂线的画法:过直线外一点画已知直线的垂线:以点P为圆心,任意长为半径,画弧,交直线于两点(如图),分别以这两点为圆心,大于两点间距离的1/2长为半径,画弧,两弧交与一点.连接p与该点,并延长与直线相交即可.5、垂线段的概念:由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。6、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.7、正确理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近又相异的概念:⑴垂线与垂线段区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。⑵两点间距离与点到直线的距离区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。⑶线段与距离:距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。8、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b。9、两条直线的位置关系:在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。10、平行公理:(平行线的存在性与唯一性):经过直线外一点,有且只有一条直线与这条直线平行.11、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行如图所示,∵b∥a,c∥a∴b∥c12、三线八角:两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。如图,直线ba,被直线l所截:①∠1与∠5在截线l的同侧,同在被截直线ba,的上方,叫做同位角(位置相同)②∠5与∠3在截线l的两旁(交错),在被截直线ba,之间(内),叫做内错角(位置在内且交错)③∠5与∠4在截线l的同侧,在被截直线ba,之间(内),叫做同旁内角。④三线八角也可以从模型中看出。同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。13、两直线平行的判定方法:①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行②两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行③两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行几何符号语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)14、平行线的性质:两条直线被第三条直线所截,性质1:两直线平行,同位角相等;几何符号语言:∵AB∥CD∴∠3=∠2(两直线平行,同位角相等)性质2:两直线平行,内错角相等;∵AB∥CD∴∠1=∠2(两直线平行,内错角相等)性质3:两直线平行,同旁内角互补。∵AB∥CD∴∠4+∠2=180°(两直线平行,同旁内角互补)cba321124315、平行线的性质与判定的区别和联系:平行线的性质与判定是互逆的关系:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补。16、两条平行线的距离:如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离。注意:直线AB∥CD,在直线AB上任取一点G,则垂线段GH的长度也就是直线AB与CD间的距离。17、命题:①命题的概念:判断一件事情的语句,叫做命题。每个命题都是题设、结论两部分组成。命题常写成“如果…那么…”的形式。用“如果”开始的部分是题设,题设是已知事项;用“那么”开始的部分是结论,结论是由已知事项推出的事项。②真命题:如果题设成立,那么结论一定成立的命题;③假命题:如果题设成立,不能保证结论一定成立的命题。18、定理:经过推理证实得到的真命题叫做定理.19、平移变换:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等,图形的这种移动,叫做平移变换,简称平移。20、平移的特征:①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。相交线与平行线练习一、选择题1.下列正确说法的个数是()①任意两个同位角相等②任意两个对顶角相等③等角的补角相等④两直线平行,同旁内角相等A.1,B.2,C.3,D.42.下列说法正确的是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D.在平面内过一点有且只有一条直线垂直于已知直线.3.下列图中∠1和∠2是同位角的是()A.⑴、⑵、⑶,B.⑵、⑶、⑷,C.⑶、⑷、⑸,D.⑴、⑵、⑸4.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°5.两平行直线被第三条直线所截,同旁内角的平分线()A.互相重合B.互相平行C.互相垂直D.无法确定6.在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。下列图案中,不能由一个图形通过旋转而构成的是()7.三条直线相交于一点,构成的对顶角共有()A、3对B、4对C、5对D、6对8.如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有()A.5个B.4个C.3个D.2个9.如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为()。A、30B、36C、42D、1810.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70B.65C.60D.55二、填空题1.一个角与它的补角之差是20º,则这个角的大小是.2.时钟指向3时30分时,这时时针与分针所成的锐角是.3.如图②,∠1=82º,∠2=98º,∠3=80º,则∠4=度.4.如图③,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28º,则∠BOE=度,∠AOG=度.5.如图④,AB∥CD,∠BAE=120º,∠DCE=30º,则∠AEC=度.6.把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′=70º,则∠OGC=.7.如图⑦,正方形ABCD中,M在DC上,且BM=10,N是AC上一动点,则DN+MN的最小值为.8.如图所示,当半径为30cm的转动轮转过的角度为120时,则传送带上的物体A平移的距离为cm。9.如图,已知AB∥CD,∠AABCD=56°,∠C=27°则∠E的度数为__________.10.如图10,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a、b、c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是_.三、解答题1.如图,直线a、b被直线c所截,且a//b,若∠1=118°,求∠2为多少度?2.已知一个角的余角的补角比这个角的补角的一半大90°,求这个角的度数等于多少?4.如图,已知∠1+∠2+180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并对结论进行说明.4.如图,在△ABC中(BCAC),∠ACB=90°,点D在AB边上,DE⊥AC于点E。(1)若∠EDA=40°,∠BCD=2∠ACD,求∠CDB的度数。(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P,问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由5.如图(a)示,五边形ABCDE是张大爷十年前承包的一块土地示意图,经过多年开垦荒地,现已变成图(b)所示的形状,但承包土地与开垦荒地的分界小路(即图(b)中折线CDE)还保留着.张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)(1)写出设计方案,并在图中画出相应的图形;(2)说明方案设计理由.FEDCBA21EADBCAECDBNMAECDB(a)(b)

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功