1企业管理中的竞争问题董志勇博士副教授中国人民大学经济学院职业经理人资格--中国最具价值的三大证书之一〖CCMC与企业管理〗2个人简介----中国人民大学经济学院院长助理副教授经济学博士----2008年北京奥运会特许商品调查委员会首席专家----2008年北京奥运会旅游纪念品调查研究首席专家----欧美同学会会员(1998年)----中国宝鸡外国语学院客座教授(1999年)----新加坡华夏学院学术委员会委员(2001年)----欧洲维多利亚大学客座教授(2002年)----亚洲发展银行青年组专家(YoungEconomistofADB)(2002年)----清华大学继续教育学院客座教授(2003年)----吉林电力高级经济顾问(2002年)----吉林白城市人民政府经济顾问(2003年)----国联股份高级顾问(2003年)----中国人民大学侨联副主席(2004年)----中国井冈山干部学院兼职教授(2005年)3博弈论和策略行为GameTheory&StrategicBehaviors4LecturePlan/本讲计划GameTheoryStrategy&PayoffMatrixDominant&DominatedStrategiesNashEquilibriumMaximinStrategy&MixedStrategyStrategicBehavior5ElementsofaGameGamehasthefollowingelements:•Players:whoisinvolved?•Rules:whomoveswhen?Whatdotheyknowwhentheymove?Whatcantheydo?•Outcomes:foreachpossiblesetofactionsbythelayers,whichistheoutcomeofthegame•Payoffs:whataretheplayers’preferencesoverthepossibleoutcome?6Strategy&Payoffs博弈论把人间一切竞争活动看成是玩策略游戏。这种策略游戏是在一定的游戏规则之下进行它的两个最基本的概念是策略与支付矩阵一种策略(Strategy)表示游戏参与者的一套运作计划和手段。如“降价15%”就是一种策略收益矩阵(Payoffmatrix)是表示游戏参与者在各种不同策略下的利润额的一套支付表格寡头垄断,尤其是双寡头垄断竞争,特别适合使用博弈论研究7Strategy&PayoffsPrisoner’sDilemma(囚犯两难)两个嫌犯被捕并受到指控,但除非至少一人招供犯罪,警方并无充分证据将其按罪判刑警方将他们分开审讯(不能沟通),并对他们说明不同行动带来的后果。如果二人都不坦白,只能判简单刑事罪,坐牢1个月如果二人都坦白,两人都会定罪,判刑六个月;如果其中一个坦白,另一个不坦白;那么坦白者马上释放(从宽)、不坦白者将会判刑九个月。请问两个嫌犯该怎么办?8Strategy&PayoffsPrisoner’sDilemma(囚犯两难)策略(Strategy):“沉默”&“招认”收益矩阵(PayoffMatrix)如下:囚犯2沉默招认囚犯1沉默-1,-1-9,0招认0,-9-6,-69Strategy&PayoffsPrisoner’sDilemma(囚犯两难)囚犯两难的问题在现实中常常出现。比如两家企业的价格战。企业B遵守协议违约降价企业A遵守协议100,10030,130违约降价130,3070,7010Strategy&Payoffs性别战博弈(TheBattleofSex)一男一女试图安排一个晚上的娱乐内容选择(策略):“歌剧”、“拳击”;不过男女有别收益矩阵(PayoffMatrix)如下:男(TheMan)歌剧拳击女(TheLady)歌剧2,10,0拳击0,01,21112Strategy&PayoffsOtherExamplesCoordinationgamesSmithandJonesaretryingtodecidewhethertodesignthecomputerstheyselltouselargeorsmallfloppydisksBothplayerswillsellmorecomputersiftheirdiskdrivesarecompatible.Strategies:“Large”or“Small”Payoffsareasfollows.13Strategy&PayoffsOtherExamplesCoordinationgames:payoffmatrixJonesLargeSmallSmithLarge2,2-1,-1Small-1,-11,114DominantStrategies(支配策略)Wesayaplayerhasadominantstrategyifitisthestrictlybestresponsetoanystrategiestheotherplayersmightpick.Intheanalysisofanygame,thefirststepistodetermineifanyplayerhasadominantstrategy.Ifsuchastrategyexists,thentheoutcomeofthegameshouldbeeasilydetermined,sincetheplayerwillusethedominantstrategyandotherplayerswillsubsequentlyadopttheirbestresponses.Examples:DoesthePrisoner’sDilemmahaveanydominantstrategy?HowabouttheCoordinationGame?15DominatedStrategies(被支配策略)Adominatedstrategyisanalternativethatyieldsalowerpayoffthansomeotherstrategy,nomatterwhattheotherplayersinthegamedo.Arationalplayerwillneveruseadominatedstrategyintheactualactionofgameplaying.Henceitcanbeeliminated.Itisclearthatiftheexistenceofadominantstrategyimpliesthatallotherchoicesareinfactthedominatedstrategies.Butitispossiblethattherearedominatedstrategies,whilethereisnodominantstrategy16BLCRU3,00,-50,-4M1,-13,3-2,4AD2,44,1-1,8Application:IterativeEliminationsExample17NashEquilibrium(纳什均衡)Eventhoughusingadominantstrategyoradominatedstrategyisapowerfulsimplewayof“solving”agame,thiskindofgameisusuallyanexception,insteadofanorm.Wemusthaveagenericmethodoffindingthesolution(s)ofagame.SolutionConceptsNashEquilibriumistheveryfirstsolutionconceptfornon-cooperativegames.18NashEquilibrium(纳什均衡)EssenceofNashEquilibriumANashEquilibriumisdefinedasasetofstrategiessuchthatnonoftheparticipantsinthegamecanimprovetheirpayoff,giventhestrategiesoftheotherparticipants.NoonehasastrictlyincentivetodeviatefromthestrategiesinaNashEquilibrium.19NashEquilibrium(纳什均衡)ExampleConsiderthefollowinggame.Isthereanydominantordominatedstrategy?Player2LCRU5,30,43,5M4,05,54,0Player1D3,50,45,320NashEquilibrium(纳什均衡)ProblemofNashEquilibrium:Multiplesolutions!Examples:BattleofSexCoordinationGame男(TheMan)歌剧拳击女(TheLady)歌剧2,10,0拳击0,01,2JonesLargeSmallSmithLarge2,2-1,-1Small-1,-11,121NashEquilibrium(纳什均衡)ProblemofNashEquilibrium:Insensitivetoextremepayoffs(risks)Example:DangerousCoordinationGameJonesLargeSmallSmithLarge2,2-1000,-1Small-1,-11,1InPractice,itisalmostsurethatSmithwantsto“playsafe”andnevertry“large”!22NashEquilibrium(纳什均衡)ProblemofNashEquilibrium:Non-existenceofpurestrategyNashEquilibriumExample:MatchthePenniesNodominantstrategy,nodominatedstrategy&nopurestrategyNashequilibriumaswell!BHeadTailAHead1,-1-1,1Tail-1,11,-123NashEquilibrium(纳什均衡)MixedStrategies(混合策略)Amixedstrategyisaprofilethatspecifiestheprobabilityofeachpurestrategythatistobeplayed.NashTheorem:Foranygamewithfinitenumberofpurestrategies,therealwaysexistsaNashEquilibriuminmixedstrategyform.24NashEquilibrium(纳什均衡)MixedStrategies(混合策略):ExamplesCoordinationGameJonesplays(Large,Small)accordingto(p,1-p)Smith’sexpectedpayoffsare:“Large”:2p+(-1)(1-p)=US(L|(p,1-p))“Small”:(-1)p+1(1-p)=US(S|(p,1-p))Smithshouldbe“indifferent”betweenthetwochoicesUS(L|(p,1-p))=US(S|(p,1-p))p=2/5HenceJones’optimalmixedstrategymustbe(0.4,0.6)Exercise:findtheoptimalmixedstrategyforSmith.MatchingthePenni