3.1回归分析的基本思想及其初步应用高二数学选修2-3数学3——统计内容1.画散点图2.了解最小二乘法的思想3.求回归直线方程y=bx+a4.用回归直线方程解决应用问题问题1:正方形的面积y与正方形的边长x之间的函数关系是y=x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否有一个确定性的关系?例如:在7块并排、形状大小相同的试验田上进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:施化肥量x15202530354045水稻产量y330345365405445450455复习变量之间的两种关系1020304050500450400350300·······施化肥量x15202530354045水稻产量y330345365405445450455xy施化肥量水稻产量自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。1、定义:1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2):现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等探索:水稻产量y与施肥量x之间大致有何规律?1020304050500450400350300·······发现:图中各点,大致分布在某条直线附近。探索2:在这些点附近可画直线不止一条,哪条直线最能代表x与y之间的关系呢?施化肥量x15202530354045水稻产量y330345365405445450455xy散点图施化肥量水稻产量探究对于一组具有线性相关关系的数据1122(,),(,),...,(,),nnxyxyxy我们知道其回归方程的截距和斜率的最小二乘估计公式分别为:^1122211()(),......(2)()nniiiiiinniiiixxyyxnxybxxxnxy^^,......(1)aybx1111,.nniiiixxyynn其中(,)xy称为样本点的中心。你能推导出这个公式吗?1、所求直线方程叫做回归直线方程;相应的直线叫做回归直线。2、对两个变量进行的线性分析叫做线性回归分析。1122211()()ˆ,()ˆˆnniiiiiinniiiixxyyxnxybxxxnxaybxy1、回归直线方程nn(x-x)(y-y)xy-nxyiiiii=1i=1ˆb==,nn222(x-x)x-nxiii=1i=1ˆˆa=y-bx.nn11x=x,y=y.iinni=1i=1其中最小二乘法:ˆˆˆybxa(,)xy称为样本点的中心。2、求回归直线方程的步骤:1111(1),nniiiixxyynn求211(2),.nniiiiixxy求(3)代入公式1122211^()(),(),......(1)nniiiiiinniiiixxyyxnxybxxxnxaybxy(4)写出直线方程为y=bx+a,即为所求的回归直线方程。^例1、观察两相关量得如下数据:x-1-2-3-4-553421y-9-7-5-3-115379101010221110,0,110,3010.3,1iiiiiiixyyyxx求两变量间的回归方程.解:列表:i12345678910xi-1-2-3-4-553421yi-9-7-5-3-115379xiyi91415125515121491011022110110100111010010iiiiixybyxxx000aybxb.yx所求回归直线方程为3、利用回归直线方程对总体进行线性相关性的检验例3、炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系。如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间y(从炉料熔化完毕到出刚的时间)的一列数据,如下表所示:x(0.01%)104180190177147134150191204121y(min)100200210185155135170205235125(1)y与x是否具有线性相关关系;(2)如果具有线性相关关系,求回归直线方程;(3)预测当钢水含碳量为160个0.01%时,应冶炼多少分钟?(1)列出下表,并计算i12345678910xi104180190177147134150191204121yi100200210185155135170205235125xiyi1040036000399003274522785180902550039155479401512510101022111159.8,172,265448,312350,287640iiiiiiixyyyxx1011010222211100.9906.(10)(10)iiiiiiixyxyrxxyy于是,10^110221101.26710iiiiixybyxxx^30.51.aybx所以回归直线的方程为=1.267x-30.51ˆy(3)当x=160时,1.267.160-30.51=172ˆy(2)设所求的回归方程为ˆˆˆybxa例题4从某大学中随机选出8名女大学生,其身高和体重数据如下表:编号12345678身高165165157170175165155170体重4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。172.85849.0ˆxy分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量.ˆ学身高172cm女大生体重y=0.849×172-85.712=60.316(kg)2.回归方程:1.散点图;n(x-x)(y-y)iii=1r=nn22(x-x)(y-y)iii=1i=1相关系数r>0正相关;r<0负相关.通常,r0.75,认为两个变量有很强的相关性.本例中,由上面公式r=0.7980.75.探究?身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,其原因是什么?如何描述两个变量之间线性相关关系的强弱?在《数学3》中,我们学习了用相关系数r来衡量两个变量之间线性相关关系的方法。相关系数r12211()().()()niiinniiiixxyyxxyy[0.751],[1,0.75],[025,0.25],rrr当,表明两个变量正相关很强;当表明两个变量负相关很强;当.表明两个变量相关性较弱。相关关系的测度(相关系数取值及其意义)-1.0+1.00-0.5+0.5完全负相关无线性相关完全正相关负相关程度增加r正相关程度增加2020/6/24郑平正制作比《数学3》中“回归”增加的内容数学3——统计1.画散点图2.了解最小二乘法的思想3.求回归直线方程y=bx+a4.用回归直线方程解决应用问题选修1-2——统计案例5.引入线性回归模型y=bx+a+e6.了解模型中随机误差项e产生的原因7.了解相关指数R2和模型拟合的效果之间的关系8.了解残差图的作用9.利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果2020/6/24郑平正制作回归分析的内容与步骤:统计检验通过后,最后是利用回归模型,根据自变量去估计、预测因变量。回归分析通过一个变量或一些变量的变化解释另一变量的变化。其主要内容和步骤是:首先根据理论和对问题的分析判断,将变量分为自变量和因变量;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;2020/6/24郑平正制作例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。2020/6/24郑平正制作172.85849.0ˆxy分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量.ˆ学身高172cm女大生体重y=0.849×172-85.712=60.316(kg)2.回归方程:1.散点图;本例中,r=0.7980.75.这表明体重与身高有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的。2020/6/24郑平正制作探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重接近于60.316kg。即,用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值,只能给出她们平均体重的值。2020/6/24郑平正制作例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。2020/6/24郑平正制作我们可以用下面的线性回归模型来表示:y=bx+a+e,(3)其中a和b为模型的未知参数,e称为随机误差。y=bx+a+e,E(e)=0,D(e)=(4)2.在线性回归模型(4)中,随机误差e的方差越小,通过回归直线(5)2ybxa预报真实值y的精度越高。随机误差是引起预报值与真实值y之间的误差的原因之一,其大小取决于随机误差的方差。y另一方面,由于公式(1)和(2)中和为截距和斜率的估计值,它们与真实值a和b之间也存在误差,这种误差是引起预报值与真实值y之间误差的另一个原因。ˆyˆaˆb2020/6/24郑平正制作思考:产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、忽略了其它因素的影响:影响身高y的因素不只是体重x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高y的观测误差。以上三项误差越小,说明我们的回归模型的拟合效果越好。2020/6/24郑平正制作函数模型与回归模型之间的差别中国GDP散点图020000400006000080000100000120000199219931994199519961997199819992000200120022003年GDP函数模型:abxy回归模型:eabxy可以提供选择模型的准则2020/6/24郑平正制作函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为0.8497285.71260.316()ykg2020/6/24郑平正制作思考:如何刻画预报变量(体重)的变化?这个变化在多大程度上与解析变量(身高)