1中考数学应试技巧和注意事项1、认真审题,不慌不忙,先易后难,不能忽略题目中的任何一个条件.做题顺序:一般按照试题顺序做,实在做不出来,可先放一放,先做别的题目,不要在一道题上花费太多的时间,而影响其他题目;做题慢的同学,要掌握好时间,力争一次的成功率;做题速度快的同学要注意做题的质量,要细心,不要马虎.2、考虑各种简便方法解题.选择题、填空题更是如此.选择题注意选择题要看完所有选项,做选择题可运用各种解题的方法,常见的方法如直接法,特殊值法,排除法,验证法,图解法,假设法(即反证法),动手操作法(比如折一折,量一量等方法).采用淘汰法和代入检验法可节省时间.有些判断几个命题正确个数的题目,一定要慎重,你认为错误的最好能找出反例,常见的方法如直接法,特殊值法,排除法,验证法,图解法,假设法(即反证法),动手操作法(比如折一折,量一量等方法).采用淘汰法和代入检验法可节省时间.填空题1.注意一题多解的情况.2.注意题目的隐含条件,比如二次项系数不为0,实际问题中的整数等;3.要注意是否带单位,表达格式一定是最终化简结果;4.求角、线段的长,实在不会时,可以尝试猜测或度量法.解答题(1)注意规范答题,过程和结论都要书写规范.(2)计算题一定要细心,最后答案要最简,要保证绝对正确.(3)先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;适当考虑技巧,如整体代入.(4)解分式方程一定要检验,应用题中也是如此.(5)解直角三角形问题,注意交代辅助线的作法,解题步骤.关注直角、特殊角.取近似值时一定要按照题目要求.(6)实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式.注意题目当中的等量关系,是为了构造方程,不等量关系是为了求自变量的取值范围,求出方程的解后,要注意验根,是否符合实际问题,要记着取舍.(7)概率题:要通过画树状图、列表或列举,列出所有等可能的结果,然后再计算概率.(8)方案设计题:要看清楚题目的设计要求,设计时考虑满足要求的最简方案,不要考虑复杂、追求美观的方案.3、解各类大题目时脑子里必须反映出该题与平时做的哪个题类似,应反映出似曾相识的感觉.大题目先把会的一步或两步解好,解题时不会做的先放一放,最后再来解决此类提高问题.(1)求二次函数解析式,第一步要检验,方可解第二步(第一步不能错,一错前功尽弃).(2)对于压轴题,基础好的学生应力争解出每一步,方可取得高分,基础稍差的应会一步解一步,不可留空白.例如:应用题的题设,存在题的存在一定要回答(3)对于存在性问题,要注意可能有几种情况不要遗漏.(4)对于动态问题,注意要通过多画草图的方法把运动过程搞清楚,也要考虑可能有几种情况.要注意点线的对应关系,用局部的变化来反映整体变化,通常利用平行得相似,注意临界状态,临界状态往往是自变量取值的分界线.4、考虑到网上阅卷对答题的要求很高,所以在答题前应设计好答案的整个布局,字要大小适中,不要把答案写在规定的区域以外的地方.否则扫描时不能扫到你所写的答案.25、调整好心理状态,解答习题时,不要浮躁,力争考出最佳水平.试题难易我不怕;若试题难,遵循“你难我难,我不怕难”的原则;若试题易,遵循“你易我易,我不大意”的原则.二、注意事项1、注意单位、设未知数、答题的完整.2、求字母系数时,注意检验判别式(否则要被扣分).3、注意物理、化学及其它学科习题与数学的联系,应反映出该题的公式,把此题公式与数学知识联系起来.此类习题不会太难,但容易错.4、实际问题要多读题目,注意认真分析,到题目中寻找等量关系,获取信息,不放过任何一个条件(包括括号里的信息),且注意解答完整.尤其注意应用题中的圆弧型实物还是抛物线型的实物.如果是圆弧找圆心,求半径.如果是抛物线建立直角坐标系,求解析式.5、注意如果第一步条件少,无从下手时,应认真审题,画草图寻找突破口,才能完成下面几步.注意考虑上步结论或上一步推导过程中的结论.6、注意综合题、压轴题要解清楚,答题要完整,尽量不被扣分.7、因式分解时,首先考虑提取公因式,再考虑公式法.一定要注意最后结果要分解到不能再分为止.8、找规律的题目,要重在找出规律,切忌盲目乱填.若是函数关系,解好一定要检验,包括自变量.若不是函数关系,应寻找指数或其它关系.9、注意双解或多解的情况.方程解的两个答案,有时只有一个答案成立,而有些几何题,却要注意考虑两种情况.有两种答案的通常有:(1)点在线段还是直线上,若在直线上一般要进行分类讨论(2)等腰三角形注意,告诉一边要分为这一边是底还是腰,告诉一角要分为这一角是顶角还是底角.(3)三角形的高(两种情况):锐角三角形和钝角三角形不一样.(4)注意四边形的分类;以A、B、C、D四个点为顶点的四边形要注意分类:AB为一边,AB为一对角线.(5)圆中①已知两圆半径,公共弦,求圆心距.②已知弦,求弦所对的圆周角.③已知半径和两条平行弦,求平行弦间的距离.④一条弧所对的圆周角的度数有一个,一条弦所对的圆周角的度数有两个⑤已知两圆半径,求相切时的圆心距(考虑内切、外切).⑥圆内接三角形,注意圆心在三角形内部还是外部(6)动态问题中的等腰三角形问题,存在类问题中找相似三角形的题型.10、注意复杂题目中的隐含条件,尤其在圆中和平面直角坐标系中,考虑用勾股定理、射影定理、解直角三角形、面积公式、斜边上的中线、直角三角形内切圆半径公式,直角三角形外接圆半径公式R=11、在三角函数的计算中,应把角放到直角三角形中,可以作必要的辅助线.解直角三角形的应用中要熟悉仰角、俯角、坡角、坡度等概念12、三个视图之间的长、宽、高关系.即长对正,宽相等,高平齐.13、熟悉圆中常见辅助线的规律,圆中常见辅助线:(1)见切线连圆心和切点;(2)两圆相交连结公共弦和连心线(连心线垂直平分公共弦);(3)两圆相切,作连心线,连心线必过切点;(4)作直径,作弦心距,构造直角三角形,应用勾股定理;(5)作直径所对的圆周角,把要求的角转化到直角三角形中.14、圆柱、圆锥侧面展开图、扇形面积及弧长公式做圆锥的问题时,常抓住两点:(1)圆锥母线长等于侧面展开图扇形的半径.3(2)圆锥底面周长等于侧面展开图扇形的弧长.15、求解析式:(1)正比例函数、反比例函数只要已知一个条件即可(2)一次函数须知两个条件(3)二次函数的三种形式:一般式、顶点式(4)抛物线的顶点坐标、对称轴16、常用的定理(1)射影定理(用相似)(2)勾股定理(3)等腰梯形的性质、判定,中位线定理(4)平行四边形、矩形、菱形、正方形中的有关定理17、反证法第一步应假设与结论相反的情况.18、(1)是轴对称图形但不是中心对称的图形有:角、等腰三角形、等边三角形、等腰梯形、正n边形(n为奇数)(2)是中心对称图形但不是轴对称图形有:平行四边形(3)既是轴对称图形又是中心对称图形的有:线段、矩形、菱形、正方形、圆、正n边形(n为偶数)19、n边形的内角和计算公式:,外角和为20、平面图形的镶嵌要注意:一点处所有内角和为360°21、如果要求尺规作图,应清楚反映出尺规作图的痕迹,否则会被扣分(一般作垂直平分线和角平分线较多).22、任意四边形的中点四边形都为平行四边形;顺次连接对角线相等的四边形的中点的四边形是菱形;顺次连接对角线互相垂直的四边形的中点的四边形是矩形23、折叠问题:A要注意折叠前后线段、角的变化;B通常要设求知数,24、注意特殊量的使用,如等腰三等形中的三线合一,正方形中的角,都是做题的关键.25、面积问题,中考中的面积问题往往是不规则图形,不易直接求解,往往需要借助于面积和与面积差.26、统计初步和概率习题注意:(1)平均数、中位数、众数、方差、极差、标准差、加权平均数的计算要准确,方差计算公式:标准差计算公式:(2)认真思考样本、总体、个体、样本容量(不带任何单位,只是一个数)在选择题中的正确判断.(注意研究的对象决定了样本的说法)(3)概率:①摸球模型题注意放回和不放回.若是二步事件,或放回事件,或关注和或积的题,一般用列表法;若是三步事件,或不放回事件,一般用树状图.②注意在求概率的问题中寻找替代物,常见的替代物有:球,扑克牌,骰子等.27、乘法公式及常见变形:28.综合题:(1)综合题一般分为好几步,逐步递进,前几步往往比较容易,一定要做,中考是按步骤给分的,能多做一些就多做一些,可以多得分数.(2)注意大前提和各小题的小前提,不要弄混.(3)注意前后问题的联系,前面得出的结论后面往往要用到.(4)从条件入手,可以多写一些结论,看哪个结论对作题有帮助,实在做不下去时,再审题,看看是否还有条件没有用到,需不需要做辅助线;从结论入手,逆向思维,正着答题.(5)往往利用相似(x形或A字形图),设求知数,构造方程,解方程而求解,必要时需做辅助线.函数图像上的点可借助函数解析式来设点,通常设横坐标,利用解析式来表示纵坐标.