2011高考数学总复习课件9.5 椭圆

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

要点梳理1.椭圆的概念在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫.这两定点叫做椭圆的,两焦点间的距离叫做.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若,则集合P为椭圆;(2)若,则集合P为线段;(3)若,则集合P为空集.§9.5椭圆基础知识自主学习椭圆焦点焦距a>ca=ca<c2.椭圆的标准方程和几何性质标准方程图形)0(12222babyax)0(12222babxay性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率a,b,c的关系c2=a2-b2)1,0(ace基础自测1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()A.B.C.D.解析设长轴长、短轴长分别为2a、2b,则2a=4b,31332123D.23242222bbbabaace2.设P是椭圆上的点.若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.5C.8D.10解析由椭圆定义知|PF1|+|PF2|=2a=10.1162522yxD3.已知椭圆x2sin-y2cos=1(0≤<2)的焦点在y轴上,则的取值范围是()A.B.C.D.解析椭圆方程化为∵椭圆焦点在y轴上,∴又∵0≤<2,∴<<.,43,243,443,2D.1cos1sin122yx.0sin1cos12434.已知椭圆C的短轴长为6,离心率为,则椭圆C的焦点F到长轴的一个端点的距离为()A.9B.1C.1或9D.以上都不对解析由题意得∴a=5,c=4.∴a+c=9,a-c=1.54C,543acb5.椭圆的两个焦点为F1、F2,短轴的一个端点为A,且F1AF2是顶角为120°的等腰三角形,则此椭圆的离心率为.解析由已知得∠AF1F2=30°,故cos30°=,从而e=.23ac23题型一椭圆的定义【例1】一动圆与已知圆O1:(x+3)2+y2=1外切,与圆O2:(x-3)2+y2=81内切,试求动圆圆心的轨迹方程.两圆相切时,圆心之间的距离与两圆的半径有关,据此可以找到动圆圆心满足的条件.思维启迪题型分类深度剖析解两定圆的圆心和半径分别为O1(-3,0),r1=1;O2(3,0),r2=9.设动圆圆心为M(x,y),半径为R,则由题设条件可得|MO1|=1+R,|MO2|=9-R.∴|MO1|+|MO2|=10.由椭圆的定义知:M在以O1、O2为焦点的椭圆上,且a=5,c=3.∴b2=a2-c2=25-9=16,故动圆圆心的轨迹方程为.1162522yx探究提高平面内一动点与两个定点F1、F2的距离之和等于常数2a,当2a|F1F2|时,动点的轨迹是椭圆;当2a=|F1F2|时,动点的轨迹是线段F1F2;当2a|F1F2|时,轨迹不存在.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线知能迁移1解析点P在线段AN的垂直平分线上,故|PA|=|PN|,又AM是圆的半径,∴|PM|+|PN|=|PM|+|PA|=|AM|=6>|MN|,由椭圆定义知,P的轨迹是椭圆.答案B题型二椭圆的标准方程【例2】已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5、3,过P且与长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程.思维启迪设椭圆方程为)0(1122222222baaybxbyax或根据题意求a,b得方程.解方法一设所求的椭圆方程为由已知条件得解得a=4,c=2,b2=12.故所求方程为),0(1)0(122222222babxaybabyax或,35)2(352222ca.11216112162222xyyx或方法二设所求椭圆方程为两个焦点分别为F1,F2.由题意知2a=|PF1|+|PF2|=8,∴a=4.在方程中,令x=±c得|y|=,在方程中,令y=±c得|x|=,依题意有=3,∴b2=12.∴椭圆的方程为)0(12222babyax).0(12222babxay或12222byaxab212222bxayab2ab2.11216112162222xyyx或探究提高运用待定系数法求椭圆标准方程,即设法建立关于a、b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),由题目所给条件求出m、n即可.知能迁移2(1)已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P(3,0),求椭圆的方程;(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(,1)、P2(-,-),求椭圆的方程.解(1)若焦点在x轴上,设方程为(a>b>0).∵椭圆过P(3,0),∴又2a=3×2b,∴b=1,方程为63212222byax3,1032222aba即.1922yx若焦点在y轴上,设方程为∵椭圆过点P(3,0),∴=1,又2a=3×2b,∴a=9,∴方程为∴所求椭圆的方程为).0(12222babxay222230ba.198122xy.1981192222xyyx或b=3.(2)设椭圆方程为mx2+ny2=1(m>0,n>0且m≠n).∵椭圆经过P1、P2点,∴P1、P2点坐标适合椭圆方程,则①、②两式联立,解得∴所求椭圆方程为,123,16nmnm①②.31,91nm.13922yx题型三椭圆的几何性质【例3】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.(1)求椭圆离心率的范围;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.(1)在△PF1F2中,使用余弦定理和|PF1|+|PF2|=2a,可求|PF1|·|PF2|与a,c的关系,然后利用基本不等式找出不等关系,从而求出e的范围;(2)利用|PF1|·|PF2|sin60°可证.思维启迪2121ΔPFFS(1)解设椭圆方程为|PF1|=m,|PF2|=n.在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mncos60°.∵m+n=2a,∴m2+n2=(m+n)2-2mn=4a2-2mn,∴4c2=4a2-3mn,即3mn=4a2-4c2.又mn≤(当且仅当m=n时取等号),∴4a2-4c2≤3a2,∴≥,即e≥.又0<e<1,∴e的取值范围是),0(12222babyax222anm22ac4121.1,21(2)证明由(1)知mn=∴mnsin60°=即△PF1F2的面积只与短轴长有关.,342b2121ΔPFFS,332b探究提高(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a、c的关系.(2)对△F1PF2的处理方法定义式的平方余弦定理面积公式.sin21cos24)2()(21Δ21222122221PFPFSPFPFPFPFcaPFPF知能迁移3已知椭圆的长、短轴端点分别为A、B,从椭圆上一点M(在x轴上方)向x轴作垂线,恰好通过椭圆的左焦点F1,∥.(1)求椭圆的离心率e;(2)设Q是椭圆上任意一点,F1、F2分别是左、右焦点,求∠F1QF2的取值范围.解(1)∵F1(-c,0),则xM=-c,yM=,∴kOM=-.∵kAB=-,∥,∴-=-,∴b=c,故e=)0(12222babyaxABOMab2acb2abOMABacb2ab.22ac(2)设|F1Q|=r1,|F2Q|=r2,∠F1QF2=,∴r1+r2=2a,|F1F2|=2c,cos=当且仅当r1=r2时,cos=0,∴212212212122221242)(24rrcrrrrrrcrr,01)2(12212212rrarra.2,0题型四直线与椭圆的位置关系【例4】(12分)椭圆C:的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|=,|PF2|=.(1)求椭圆C的方程;(2)若直线l过圆x2+y2+4x-2y=0的圆心M,交椭圆C于A,B两点,且A,B关于点M对称,求直线l的方程.)0(12222babyax34314(1)可根据椭圆定义来求椭圆方程;(2)方法一:设斜率为k,表示出直线方程,然后与椭圆方程联立,利用根与系数的关系及中点坐标公式求解;方法二:设出A、B两点坐标,代入椭圆方程,作差变形,利用中点坐标公式及斜率求解(即点差法).思维启迪解(1)因为点P在椭圆C上,所以2a=|PF1|+|PF2|=6,a=3.2分在Rt△PF1F2中,故椭圆的半焦距c=,4分从而b2=a2-c2=4,所以椭圆C的方程为6分,52212221PFPFFF5.14922yx(2)方法一设点A,B的坐标分别为(x1,y1),(x2,y2).已知圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1),从而可设直线l的方程为:y=k(x+2)+1,8分代入椭圆C的方程得:(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.因为A,B关于点M对称,所以10分所以直线l的方程为y=(x+2)+1,即8x-9y+25=0.(经检验,所求直线方程符合题意)12分,98,29491822221kkkkxx解得98方法二已知圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1),8分设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1≠x2,①②由①-②得:③因为A,B关于点M对称,所以x1+x2=-4,y1+y2=2,1492121yx1492222yx.04))((9))((21212121yyyyxxxx代入③得即直线l的斜率为,10分所以直线l的方程为y-1=(x+2),即8x-9y+25=0.(经检验,所求直线方程符合题意).12分,982121xxyy9898探究提高(1)直线方程与椭圆方程联立,消元后得到一元二次方程,然后通过判别式Δ来判断直线和椭圆相交、相切或相离.(2)消元后得到的一元二次方程的根是直线和椭圆交点的横坐标或纵坐标,通常是写成两根之和与两根之积的形式,这是进一步解题的基础.(3)若已知圆锥曲线的弦的中点坐标,可设出弦的端点坐标,代入方程,用点差法求弦的斜率.注意求出方程后,通常要检验.知能迁移4若F1、F2分别是椭圆(a>b>0)的左、右焦点,P是该椭圆上的一个动点,且|PF1|+|PF2|=4,|F1F2|=2.(1)求出这个椭圆的方程;(2)是否存在过定点N(0,2)的直线l与椭圆交于不同的两点A、B,使⊥(其中O为坐标原点)?若存在,求出直线l的斜率k;若不存在,说明理由.12222byax3OAOB解(1)依题意,得2a=4,2c=2,所以a=2,c=,∴b=∴椭圆的方程为(2)显然当直线的斜率不存在,即x=0时,不满足条件.设l的方程为y=kx+2,由A、B是直线l与椭圆的两个不同的交点,设A(x1,y1),B(x2,y2),由消去y并整理,得33.122ca.1422yx,21422kxyyx(1+4k2)x2+16kx+

1 / 59
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功