浙江省高考数学数列解答题专项训练【A组】1、已知实数列是}{na等比数列,其中71,a且4561aaa,,成等差数列.(Ⅰ)求数列}{na的通项公式;(Ⅱ)数列}{na的前n项和记为,nS证明:nS<128,3,2,1(n…).解:(Ⅰ)设等比数列na的公比为()qqR,由6711aaq,得61aq,从而3341aaqq,4251aaqq,5161aaqq.因为4561aaa,,成等差数列,所以4652(1)aaa,即3122(1)qqq,122(1)2(1)qqq.所以12q.故116111642nnnnaaqqq.(Ⅱ)116412(1)1128112811212nnnnaqSq.2、记等差数列{}na的前n项和为nS,已知2446,10aaS.(Ⅰ)求数列{}na的通项公式;(Ⅱ)令2nnnba*(N)n,求数列{}nb的前n项和nT.解:(Ⅰ)设等差数列na的公差为d,由2446,10aaS,可得11246434102adad,即1123235adad,解得111ad,∴111(1)naandnn,故所求等差数列na的通项公式为nan(Ⅱ)依题意,22nnnnban,∴12nnTbbb231122232(1)22nnnn2nT2341122232(1)22nnnn,∴2311(22222)2nnnnTn1212212nnn1(1)22nn∴1(1)22nnTn.3、数列)(2,1,}{*11NnSaaSnannnn项和为的前(I)求数列nnaa的通项}{;(II)求数列.}{nnTnna项和的前解:(I)解法一:nnSa21,.1.3,21111aSSSSSSnnnnn又).(3,3,1}{*1NnSSnnn的等比数列公式为是首项为数列当)2(322,221nSannnn时,2,321,12nnann解法二:nnSa21①)2(21nSann②∴当2n时,①-②得2223211211aSaaaaaannnnn又)2(322nann故2,321,12nnann(2)12323nnTaaana,当1,11Tn时;当0122,1436323nnnTn时,…………①12133436323nnTn,…………②①-②得:12212242(333)23nnnTn2113(13)2223131(12)3nnnnn).2(3)21(211nnTnn又111aT也满足上式,).(3)21(21*1NnnTnn4、数列na中,3a=1,12naaa1na(n=1,2,3…).(Ⅰ)求1a,2a;(Ⅱ)求数列na的前n项和nS;解:(Ⅰ)∵12aa,123aaa,∴1321aa,∴1a=21,2a=21.(Ⅱ)∵nS=1na=n1nSS,∴2nS=1nS,n1nSS=2,∴{nS}是首项为1112Sa=,公比为2的等比数列.∴nS=121n2=2n2.5、设{}na是公比大于1的等比数列,nS为数列{}na的前n项和.已知37S,且123334aaa,,构成等差数列.(1)求数列{}na的通项公式.(2)令31ln12nnban,,,,求数列{}nb的前n项和.解:(1)由已知得1231327:(3)(4)3.2aaaaaa,解得22a.设数列{}na的公比为q,由22a,可得1322aaqq,.又37S,可知2227qq,即22520qq,解得12122qq,.由题意得12qq,.11a.故数列{}na的通项为12nna.(nN)(2)由于31ln12nnban,,,,由(1)得3312nna3ln23ln2nnbn又13ln2nnbb{}nb是等差数列.12nnTbbb1()2(3ln23ln2)23(1)ln2.2nnbbnnnn故3(1)ln22nnnT.6、已知数列{}na的各项均为正数,前n项和为nS,且(1),.2nnnaaSnN(1)求证:数列{}na是等差数列;(2)设121,,.2nnnnnbTbbbTS求解:(1)(1),,1,2nnnaaSnnN当时1111(1),12aaSa2221112111222()2nnnnnnnnnnnnnSaaaSSaaaaSaa111()(1)0,0nnnnnnaaaaaa,11,2nnaan(),所以数列{}na是等差数列(2)由(1)得(1)11,,22(1)nnnnnnanSbSnn所以121111223(1)nnTbbbnn11111122311111nnnnn7、设数列na的前n项和为nS,已知21nnnbabS(Ⅰ)证明:当2b时,12nnan是等比数列;(Ⅱ)求na的通项公式.解:由题意知12a,且21nnnbabS;11121nnnbabS两式相减得1121nnnnbaaba,即12nnnaba①(Ⅰ)当2b时,由①知122nnnaa,于是1122212nnnnnanan122nnan又111210na,所以12nnan是首项为1,公比为2的等比数列。(Ⅱ)当2b时,由(Ⅰ)知1122nnnan,即112nnan当2b时,由①得1111122222nnnnnababb22nnbbab122nnbab因此11112222nnnnababb212nbbb,从而121122222nnnnabbnb.8、在数列na中,11a,nS为其前n项和,若点1,1nSSannn在直线x+y=0上,(1)求数列na的通项公式;(2)设nnnSb2,其前n项和为nT,求nT解:(1)点1,nnnSSa在直线x+y=0上,01nnnSSa,,111,1,公差11=1为等差数列,首项1,111,0,时,2当1111111ndnSSdaSSSSSSSSSSannnnnnnnnnnn1,nSn1112,1nnnnaSSnn当时,1,111,21nnannn;(2)nnnSb2,,2nnnb221,221212,222222,221232222,22322211132143232321nnnnnnnnnnnnnnnnTnTnTTnnTnbbbbT9、设数列na满足211233333nnnaaaa…,a*N.(Ⅰ)求数列na的通项;(Ⅱ)设nnnba,求数列nb的前n项和nS.解:(I)2112333...3,3nnnaaaa221231133...3(2),3nnnaaaan1113(2).333nnnnan1(2).3nnan验证1n时也满足上式,*1().3nnanN(II)3nnbn,23132333...3nnSn2312333...33nnnSn11332313nnnSn,111333244nnnnS10、在数列中na中,111222()nnnaaanN,.(Ⅰ)求数列na的通项公式;(Ⅱ)求数列na的前n项和nS;解:(1)由1122()nnnaanN,可得11122nnnnaa,所以2nna为等差数列,其公差为1,首项为1,故2nnan,所以数列na的通项公式为2nnan.(Ⅱ)解:设2341122232(1)22nnnSnn,①3451222232(1)22nnnSnn②①式减去②式,得2123112(12)(12)2222212nnnnnSnn,1(1)24nnSn.所以数列na的前n项和为1(1)24nnSn.23413132333...3nnSn11、已知数列na满足:122nnnaaa,且121,2aa,*nN.(Ⅰ)设1nnnbaa,证明:数列nb是等比数列;(Ⅱ)求na的通项公式.解:(Ⅰ)122nnnaaa,即2112111222nnnnnnnnaaaaaaaa即112nnbb,又1211baa,故数列nb是首项为1,公比为12的等比数列.(Ⅱ)根据(Ⅰ)知,112nnb即2112nnnaa;31212nnnaa…;3212aa;02112aa把上面1n个式子相加得:12311111121122212nnnnaa,即1521332nna.12、设等差数列{an}的前n项和为Sn,已知S4=44,S7=35(1)求数列{an}的通项公式与前n项和公式;(2)求数列|}{|na的前n项和。解:(1)设数列的公差为d,由已知S4=44,S7=35可得a1=17,d=-4∴an=-4n+21(n∈N),Sn=-2n2+19(n∈N).(2)由an=-4n+21≥0得n≤421,故当n≤5时,an≥0,当n≥6时,0na当n≤5时,Tn=Sn=-2n2+19n当n≥6时,Tn=2S5-Sn=2n2-19n+90.13、已知数列na的前n项和nS292nnNn.(Ⅰ)判断数列na是否为等差数列;(Ⅱ)设nnaaaR21,求nR;解:(Ⅰ)∵nS292nnNn,∴当1n时,1011Sa,当2n时,1nnnSSa292nn21912nnn210,∴2210110nnnan.∴数列na不是等差数列.(Ⅱ)由2210110nnnan可知:当5n时,nnaa,当5n时,nnaa.∴当5n时,2922121nnSaaaaaaRnnnn,当5n时,nnaaaR21naaaaaa7652152SSn4292452522922nnnn.即:5429529