1第1章静力学公理和物体的受力分析1-1画出下列各图中物体A,ABC或构件AB,AC的受力图。未画重力的各物体的自重不计,所有接触处均为光滑接触。FN1APFN2(a)(a1)FTAPFN(b)(b1)AFN1PBFN3(c)(c1)FN2FTBFAyAP1P2FAx(d)(d1)FAFFBAB(e)(e1)2AqFFAyFBFAxAB(f)(f1)FBCFCFA(g)(g1)FAyAFCCFAxBP1P2(h)(h1)BFCFCDAFAyFAx(i)(i1)(j)(j1)BFBFCFAyAPFAx(k)(k1)3FCACFACABFBAFABAFA′CFA′BP(l)(l1)(l2)(l3)图1-11-2画出下列每个标注字符的物体的受力图。题图中未画重力的各物体的自重不计,所有接触处均为光滑接触。CFN′P2FN2(a)(a1)BFN1BFN1CP2P1FAyAFN2FAxFNP1FAyAFAx(a2)(a3)FN1AP1BP2FN3(b)(b1)FN′FN2FN1ABFN3P2P1FNFN2(b2)(b3)4PBFAyAFAxCP1FN1DFN2P2(c)(c1)FAyDFN2B1AFT′FAxFN1P2(c2)(c3)FAyAqFBFAxCDFC(d)(d1)FAyAFAxqCFDxFCFDyDDFD′yqFBFD′xB(d2)(d3)FAxFAyqFAyqFB′xBFCyCABPFCxFAxABFByFBxFCxCPFCyFB′y(e)(e1)(e2)(e3)F1FAyCF2FByABFAx(f)(f1)FBx5F1FAyAFAxFCxCFCyCFC′yFC′xF2FByBFBx(f2)(f3)FAyAFBCBFAxP(g)(g1)FC′yFTF′FAxFAyAFBDFTCBFCxCCxP(g2)(g3)F1FB′BDFCyCFBF2FCxBFAyAFAx(h)(h1)(h2)FCxAFAyFCyCFOyFAxFC′yAFEFCDFOxOFC′xEB(i)(i1)(i2)6FAAFA′xCFOyOEFOxFDFByBFBxFA′yFE′FBxFByB(i3)(i4)FAyDEAAxCFCxCFTFByBHPFBxFByBFBxFCy(j)(j1)(j2)DFT2FT′2EFAxFAyFD′yFE′yCFC′xFE′xFT1FDyFDxFExFEyFT3ADFD′xEFC′y(j3)(j4)(j5)EFFBCEDF′BθFC′yFD′E(k)(k1)FFBCBθEFFCxCFCyDFAyAFAx90°−θFDEDFAyAFAx(k2)(k3)71DFBF1BACFAFB′FDBDFC(l)(l1)(l2)F2FD′DEFEF1F2DBACEFAFCFE(l3)(l4)或FFB′FDyFD′x1F2DBDFDxDBCEFCFEyFExACFAFCEFEyFEx(l2)’(l3)’(l4)’FA′DAFCyCFCxF1B(m)(m1)FADDEFEHF2FHFADAFA′D(m2)(m3)8FFkFOyOAFOxFNAFNBB(n)(n1)FN1BDqFB′FN2(n2)FN3FBDFFCFEAGACEFG(o)(o1)BBDFBFFFDFF′FEAFAFB′CCDDEFF(o2)(o3)(o4)图1-29=)22F第2章平面汇交力系与平面力偶系2-1铆接薄板在孔心A,B和C处受3个力作用,如图2-1a所示。F1=100N,沿铅直方向;F3=50N,沿水平方向,并通过点A;F2=50N,力的作用线也通过点A,尺寸如图。求此力系的合力。cF3dF2bF1FRθyF1F2AF3x60a(a)(b)(c)图2-1解(1)几何法作力多边形abcd,其封闭边ad即确定了合力FR的大小和方向。由图2-1b,得FR=(F1+F2×4/5)+(F3+F2×3/5)=∠(F(100N+50N×4/5)2+(50N+50N×3/5)2=161N,F)=arccos(F1+F2×4/5)R1R100N+50N×4/5arccos(=161N29.74o=29o44′(2)解析法建立如图2-1c所示的直角坐标系Axy。∑Fx=F1+F2×3/5==50N+50N×3/5=80N∑Fy=F1+F2×4/5=100N+50N×4/5=140NFR=(80i+140j)NFR=(80N)2+(140N)2=161N2-2如图2-2a所示,固定在墙壁上的圆环受3条绳索的拉力作用,力F1沿水平方向,力F3沿铅直方向,力F2与水平线成40°角。3个力的大小分别为F1=2000N,F2=2500N,F3=1500N。求3个力的合力。xF1O40°F2F340°F2baF1OθFRF3yc(a)(b)(c)图2-2解(1)解析法建立如图2-2b所示的直角坐标系Oxy。∑Fx=F1+F2cos40°=2000N+2500N⋅cos40°=3915N102222∑Fy=F3+F2sin40°=1500N+2500N⋅sin40°=3107NFR=(∑Fx)+(∑Fy)=(39152+31072)N=4998N∠(FR,Fx)=arccos((2)几何法∑FxFR)=arccos(3915N4998N)=38°26′作力多边形Oabc,封闭边Oc确定了合力FR的大小和方向。根据图2-2c,得FR=(F1+F2cos40°)+(F3+F2sin40°)=(2000+2500cos40°)2+(1500+2500sin40°)2=4998N∠(FR,F1)=arccos∑FxFR=arccos3915N4998N=38°26′2-3物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另1端接在绞车D上,如图2-3a所示。转动绞车,物体便能升起。设滑轮的大小、杆AB与CB自重及摩擦略去不计,A,B,C三处均为铰链连接。当物体处于平衡状态时,求拉杆AB和支杆CB所受的力。yFABFCB30°FTBx30°P(a)(b)图2-3解取支架、滑轮及重物为研究对象,坐标及受力如图2-3b所示。由平衡理论得∑Fx=0,−FAB−FCBcos30°−FTsin30°=0∑Fy=0,−FCB−sin30°−FTcos30°−P=0将FT=P=20kN代入上述方程,得FAB=54.6kN(拉),FCB=−74.6kN(压)2-4火箭沿与水平面成β=25°角的方向作匀速直线运动,如图2-4a所示。火箭的推力F1=100kN,与运动方向成θ=5°角。如火箭重P=200kN,求空气动力F2和它与飞行方向的交角γ。yF2ϕθγβxF1P(a)(b)图2-4解坐标及受力如图2-4b所示,由平衡理论得∑Fx=0,F1cos(θ+β)−F2sinϕ=0(1)F2sinϕ=F1cos(θ+β)11∑Fy=0,F1sin(θ+β)−P+F2cosϕ=0(2)F2cosϕ=P−F1sin(θ+β)式(1)除以式(2),得tanϕ=代入有关数据,解得ϕ=30°F1cos(θ+β)P−F1sin(θ+β)γ=90°+ϕ−β=90°+30°−25°=95°将ϕ值等数据代入式(1),得F2=173kN2-5如图2-5a所示,刚架的点B作用1水平力F,刚架重量不计。求支座A,D的约束力。yFBCxFAADFD(a)(b)图2-5解研究对象:刚架。由三力平衡汇交定理,支座A的约束力FA必通过点C,方向如图2-5b所示。取坐标系Cxy,由平衡理论得∑Fx=0,F−FA×2=05(1)∑Fy=0,FD−FA×1=05(2)式(1)、(2)联立,解得5FA=F=1.12F,FD=0.5F22-6如图2-6a所示,输电线ACB架在两线杆之间,形成1下垂曲线,下垂距离CD=f=1m,两电线杆距离AB=40m。电线ACB段重P=400N,可近似认为沿AB连线均匀分布。求电线中点和两端的拉力。FTA10my10mθP/2DFTCxOC(a)(b)图2-6解本题为悬索问题,这里采用近似解法,假定绳索荷重均匀分布。取AC段绳索为研究对象,坐标及受力如图2-6b所示。图中:由平衡理论得W=P=200N12∑Fx=0,FTC−FTAcosθ=0(1)12F′∑Fy=0,FTAsinθ−W1=0(2)式(1)、(2)联立,解得FTA=W1=sinθ200N1102+12=2010N因对称FTC=FTAcosθ=2010N×10102+12=2000NFTB=FTA=2010N2-7如图2-7a所示液压夹紧机构中,D为固定铰链,B,C,E为活动铰链。已知力F,机构平衡时角度如图2-7a,求此时工件H所受的压紧力。FNByFBFBCθCFB′CθyθFCDCECxθx′FCEyθEFNHFNE(a)(b)(c)(d)图2-7解(1)轮B,受力如图2-7b所示。由平衡理论得∑Fy=0,FBC=Fsinθ(压)(2)节点C,受力如图2-7c所示。由图2-7c知,F'BC⊥FCD,由平衡理论得FBC∑Fx=0,FBC−FCEcos(90°−2θ)=0,FCE=sin2θ(3)节点E,受力如图2-7d所示∑Fy=0,FNH=F'CEcosθ=F2sin2θ即工件所受的压紧力FNH=F2sin2θ2-8图2-8a所示为1拨桩装置。在木桩的点A上系1绳,将绳的另1端固定在点C,在绳的点B系另1绳BE,将它的另1端固定在点E。然后在绳的点D用力向下拉,使绳的BD段水平,AB段铅直,DE段与水平线、CB段与铅直线间成等角θ=0.1时,tanθ≈θ)。如向下的拉力F=800N,求绳AB作用于桩上的拉力。rad(当θ很小yFDEyFBCθF′DBxθDFDBxBFFAB(a)(b)(c)图2-813F解(1)节点D,坐标及受力如图2-8b,由平衡理论得∑Fy解得=0,∑Fx=0,FDEsinθ−F=0FDB−FDEcosθ=0FDB=Fcotθ讨论:也可以向垂直于FDE方向投影,直接得FDB=Fcotθ(2)节点B,坐标及受力如图2-8c所示。由平衡理论得∑Fx=0,FCBsinθ−FDB'=0∑Fy解得=0,FCBsinθ−FAB=0FAB=FDBcotθ=Fcot2θ=Fθ2=800N=80kN0.122-9铰链4杆机构CABD的CD边固定,在铰链A、B处有力F1,F2作用,如图2-9a所示。该机构在图示位置平衡,不计杆自重。求力F1与F2的关系。yxA45°FABxFA′BB30°F260°1FAC30°FBDy(a)(b)(c)图2-9解(1)节点A,坐标及受力如图2-9b所示,由平衡理论得∑Fx=0,FABcos15°+F1cos30°=0,F=−3F1(压)AB2cos15°(2)节点B,坐标及受力如图2-9c所示,由平衡理论得∑Fx=0,−FABcos30°−F2cos60°=03F1F2=−3FAB=2cos15°=1.553F1即F1﹕F2=0.6442-10如图2-10所示,刚架上作用力F。试分别计算力F对点A和B的力矩。解MA(F)=−FbcosθMB(F)=−Fbcosθ+Fasinθ=F(asinθ−bcosθ)图2-102-11为了测定飞机螺旋桨所受的空气阻力偶,可将飞机水平放置,其1轮搁置在地秤上,如图2-11a所示。当螺旋桨未转动时,测得地秤所受的压力为4.6kN,当螺旋桨转动时,测得地秤所受的压力为6.4kN。已知两轮间距离l=2.5m,求螺旋桨所受的空气阻力偶的矩M。14BPMOFN1FN2l(a)(b)图2-11解研究对象和受力如图2-11b,约束力改变量构成1力偶,则∑M=0,−M+(6.4kN−4.6kN)l=0,M=1.8kN⋅l=4.5kN⋅m2-12已知梁AB上作用1力偶,力偶矩为M,梁长为l,梁重不计。求在图2-12a,2-12b,2-12c三种情况下支座A和B的约束力。l/2MABFAFBl(a)(a1)l/3MABFAFlB(b)(b1)θl/2FAMABlθFB(c)(c1)图2-12解(a)梁AB,受力如图2-12a1所示。FA,FB组成力偶,故FA=FB∑MA=0,FBl−M=0,(b)梁AB,