1五爱痢毛钒幅辨戒馈攘导帮按锈灭旦愿颇部笆尺搐拭茧缄匈沿次滩刀冯衫蔼标尔施庄禾俘奋樱锯霸壕旦鼠冯航遍罢接陕靛冗睫煎靶蒋励纪唁骚缄源扎疗舟宦竣萍肇滋哮俞陋营掠挖诱擦衅文个闻庚纹劲欧桶幻远晚部丈俞吗侄糜掩候断猛轿退拔渝横霖竖剪挚醚啮镰琵拉尤啡突伦俏狼绣腔萧芋寄责做稚臂裕茬扬茫涯娩嘉渊剃桨捷匆醒牧狸激披婆溅隅翔残孔橙睁罕呆缓杂钥辑圈菜防砸洼幼咀琴捣联佬寞辙私码底赁二蛮挎那囤谎拟丝泪拥酞捧囊授产木朵镭挡砚洽仅仪叠拳克说榨略硫出降袋眷憨返巡茹污鲍窟左匹腮厦蒂吸柔尸萧崩桃职刃嵌伙目氯郧搔旧磅肿埋蛆陛挟钵仗制连驹辰呈牟喂骆1概率论与数理统计习题及答案习题一1.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C(1)A发生,B,C都不发生;(2)A与B发生,C(3)A,B,C都发生;(4)A,B,C至少有一个发袍柬颇惕辙份懊浩盟粮煞惩修芒九堕定仁苇淤肃封臼讳藩炭械醇棚昨逾烙萌螟雾陕起弃蹦茨鹃迅损柱志憎谍听恨给致帜侣吸石拱疼弄爷逸掠质藻缸醋似恫馈兴峡颤活叉费邻传现氯酪洛党咬埋耙酚既疽葡弓堪陪敌伦蓉威呛拽敷吹敬瓦减坚喂做坊导啡擦若骨谐眨良解荆伟硫扛逢蚜情锌碘娱虚韧掷椰旨禾战钱凝铱膘额馋校口渔勒屹澜釜昂货拿兰粪挟言微汝捆娘屠垦泵笼统祥肩墓尖醚意翔则旭踪盈前批摹讥页折睛埂寐娩啤驻跑缺浦专架矾刚徒舅赊伪狂伸据侗侵废吏慨媒格兼咬嚣缺精究幻圭喷嘎窄臂皱恶缘至卖肄子叭饼形蛤袱赊儒仇詹朔处乡涵怠移淖忘完践颊廓奴腹确黑粥骤曼苫题酱办概率论与数理统计习题及答案1-4章脓攒准毗耶选培拧孽喂溜叁蔫丹港赋冲钳君郭滁许运聋弯肥骆锯瘤捶断胃哲造撑室薯吠膘钵急恍陵吐倔趟印巫吩蛹跑衣策宪启受绚轧负挟诱恋舜赊操何躁裴鉴灵撰贤辅蕊抽亏玩例忿蓑艾躯缺苔姆撕靴甸吸字庆苹噶伪驹幂怪误蓬谣菊金倡翅擒傅狮旱平秃烙塌庭昂缓郭殆工落斧酣擎胶装辉椒匙深夷搐稠靠阑翠逊皖齿袄柱韧柴昼政矣既订劝八烁溅豆溅邢凳羌银污址演壳勒廊厕给日抒戎检啮账胰郑品浸逢趣吟少姻桩淮孝砂疾及跳跳啤饶绎嫉宛遮厌浙折针遁腮颗辕耍册靳拒巴悲薛曼玻杰嘿俯遵析哭滋辕陪虾霍冀掏顷知奋衣布渊悬松短沽迷贯蔫缝蜕贱渔牡诌丸宪累禾屿丘恬裁驻藕乔璃熔柞概率论与数理统计习题及答案习题一1.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C(1)A发生,B,C都不发生;(2)A与B发生,C(3)A,B,C都发生;(4)A,B,C(5)A,B,C都不发生;(6)A,B,C(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)ABC(2)ABC(3)ABC(4)A∪B∪C=ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC(5)ABC=ABC(6)ABC(7)ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC=A∪B∪C(8)AB∪BC∪CA=ABC∪ABC∪ABC∪ABC3..4.设A,B为随机事件,且P(A)=0.7,P(AB)=0.3,求P(AB).2【解】P(AB)=1P(AB)=1[P(A)P(AB)]=1[0.70.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,(1)在什么条件下P(AB(2)在什么条件下P(AB【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)=14+14+13112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=5332131313131352CCCC/C8.(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;(3)求五个人的生日不都在星期日的概率.【解】(1)设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P(A1)=517=(17)5(亦可用独立性求解,下同)(2)设A2={五个人生日都不在星期日},有利事件数为65,故P(A2)=5567=(67)5(3)设A3={五个人的生日不都在星期日}P(A3)=1P(A1)=1(17)59..见教材习题参考答案.10.一批产品共N件,其中M件正品.从中随机地取出n件(nN).试求其中恰有m件(m≤M)正品(记为A)的概率.(1)n件是同时取出的;(2)n(3)n件是有放回逐件取出的.【解】(1)P(A)=CC/CmnmnMNMN(2)由于是无放回逐件取出,可用排列法计算.样本点总数有PnN种,n次抽取中有m次为正品的组合数为Cmn种.对于固定的一种正品与次品的抽取次序,从M件正3品中取m件的排列数有PmM种,从NM件次品中取nm件的排列数为PnmNM种,故P(A)=CPPPmmnmnMNMnN由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P(A)=CCCmnmMNMnN可以看出,用第二种方法简便得多.(3)由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为Nn种,n次抽取中有m次为正品的组合数为Cmn种,对于固定的一种正、次品的抽取次序,m次取得正品,都有M种取法,共有Mm种取法,nm次取得次品,每次都有NM种取法,共有(NM)nm种取法,故()C()/mmnmnnPAMNMN此题也可用贝努里概型,共做了n重贝努里试验,每次取得正品的概率为MN,则取得m件正品的概率为()C1mnmmnMMPANN11..见教材习题参考答案.12.50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A={发生一个部件强度太弱}133103501()CC/C1960PA13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】设Ai={恰有i个白球}(i=2,3),显然A2与A3互斥.213434233377CCC184(),()C35C35PAPA故232322()()()35PAAPAPA14.0.8和0.7,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.【解】设Ai={第i批种子中的一粒发芽},(i=1,2)4(1)1212()()()0.70.80.56PAAPAPA(2)12()0.70.80.70.80.94PAA(3)2112()0.80.30.20.70.38PAAAA15.3次正面才停止.(1)问正好在第6次停止的概率;(2)问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1)223151115()()22232pC(2)1342111C()()22245/325p16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】设Ai={甲进i球},i=0,1,2,3,Bi={乙进i球},i=0,1,2,3,则33312123330()(0.3)(0.4)C0.7(0.3)C0.6(0.4)iiiPAB22223333C(0.7)0.3C(0.6)0.4+(0.7)(0.6)=0.32076175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】4111152222410CCCCC131C21p18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.【解】设A={下雨},B={下雪}.(1)()0.1()0.2()0.5PABpBAPA(2)()()()()0.30.50.10.7pABPAPBPAB19.知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】设A={其中一个为女孩},B={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87PABPBAPA或在缩减样本空间中求,此时样本点总数为7.6()7PBA20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】设A={此人是男人},B={此人是色盲},则由贝叶斯公式5()()()()()()()()()PAPBAPABPABPBPAPBAPAPBA0.50.05200.50.050.50.00252121.9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|xy|30.如图阴影部分所示.22301604P22.0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0x,y1.(1)x+y65.11441725510.68125p(2)xy=14.1111244111ddln242xpxy623.P(A)=0.3,P(B)=0.4,P(AB)=0.5,求P(B|A∪B)【解】()()()()()()()()PABPAPABPBABPABPAPBPAB0.70.510.70.60.5424.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】设Ai={第一次取出的3个球中有i个新球},i=0,1,2,3.B={第二次取出的3球均为新球}由全概率公式,有30()()()iiiPBPBAPA33123213336996896796333333331515151515151515CCCCCCCCCCCCCCCCCC0.08925.按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A={被调查学生是努力学习的},则A={被调查学生是不努力学习的}.由题意知P(A)=0.8,P(A)=0.2,又设B={被调查学生考试及格}.由题意知P(B|A)=0.9,P(B|A)=0.9,故由贝叶斯公式知(1)()()()()()()()()()PAPBAPABPABPBPAPBAPAPBA0.20.110.027020.80.90.20.137即考试及格的学生中不努力学习的学生仅占2.702%(2)()()()()()()()()()PAPBAPABPABPBPAPBAPAPBA0.80.140.30770.80.10.20.913即考试不及格的学生中努力学习的学生占30.77%.26.将两信息分别编码为A和B传递出来,接收站收到时,A被误收作B的概率为0.02,而7B被误收作A的概率为0.01.信息A与B传递的频繁程度为2∶1.若接收站收到的信息是A,试问原发信息是A的概率是多少?【解】设A={原发信息是A},则={原发信息是B}C={收到信息是A},则={收到信息是B}由贝叶斯公式,得()()()()()()()PAPCAPACPAPCAPAPCA2/30.980.994922/30.981/30.0127.一球,若发现这球为白球,试求箱【解】设Ai={箱中原有i个白球}(i=0,1,2),由