1《经济数学基础12》形成性考核册及参考答案作业(一)(一)填空题1.___________________sinlim0xxxx.答案:02.设0,0,1)(2xkxxxf,在0x处连续,则________k.答案:13.曲线xy在)1,1(的切线方程是.答案:2121xy4.设函数52)1(2xxxf,则____________)(xf.答案:x25.设xxxfsin)(,则__________)2π(f.答案:2π(二)单项选择题1.函数212xxxy的连续区间是()答案:DA.),1()1,(B.),2()2,(C.),1()1,2()2,(D.),2()2,(或),1()1,(2.下列极限计算正确的是()答案:BA.1lim0xxxB.1lim0xxxC.11sinlim0xxxD.1sinlimxxx3.设yxlg2,则dy().答案:BA.12dxxB.1dxxln10C.ln10xxdD.1dxx4.若函数f(x)在点x0处可导,则()是错误的.答案:BA.函数f(x)在点x0处有定义B.Axfxx)(lim0,但)(0xfAC.函数f(x)在点x0处连续D.函数f(x)在点x0处可微5.当0x时,下列变量是无穷小量的是().答案:CA.x2B.xxsinC.)1ln(xD.xcos(三)解答题1.计算极限(1)21123lim221xxxx(2)218665lim222xxxxx(3)2111lim0xxx(4)3142353lim22xxxxx(5)535sin3sinlim0xxx(6)4)2sin(4lim22xxx22.设函数0sin0,0,1sin)(xxxxaxbxxxf,问:(1)当ba,为何值时,)(xf在0x处有极限存在?(2)当ba,为何值时,)(xf在0x处连续.答案:(1)当1b,a任意时,)(xf在0x处有极限存在;(2)当1ba时,)(xf在0x处连续。3.计算下列函数的导数或微分:(1)2222log2xxyx,求y答案:2ln12ln22xxyx(2)dcxbaxy,求y答案:2)(dcxcbady(3)531xy,求y答案:3)53(23xy(4)xxxye,求y答案:xxxye)1(21(5)bxyaxsine,求yd答案:dxbxbbxadyax)cossin(e(6)xxyx1e,求yd答案:ydxxxxd)e121(12(7)2ecosxxy,求yd答案:ydxxxxxd)2sine2(2(8)nxxynsinsin,求y答案:)coscos(sin1nxxxnyn3(9))1ln(2xxy,求y答案:211xy(10)xxxyx212321cot,求y答案:652321cot61211sin2ln2xxxxyx4.下列各方程中y是x的隐函数,试求y或yd(1)1322xxyyx,求yd答案:xxyxyyd223d(2)xeyxxy4)sin(,求y答案:)cos(e)cos(e4yxxyxyyxyxy5.求下列函数的二阶导数:(1))1ln(2xy,求y答案:222)1(22xxy(2)xxy1,求y及)1(y答案:23254143xxy,1)1(y作业(二)(一)填空题1.若cxxxfx22d)(,则___________________)(xf.答案:22ln2x2.xxd)sin(________.答案:cxsin3.若cxFxxf)(d)(,则xxxfd)1(2.答案:cxF)1(2124.设函数___________d)1ln(dde12xxx.答案:05.若ttxPxd11)(02,则__________)(xP.答案:211x(二)单项选择题41.下列函数中,()是xsinx2的原函数.A.21cosx2B.2cosx2C.-2cosx2D.-21cosx2答案:D2.下列等式成立的是().A.)d(cosdsinxxxB.)1d(dlnxxxC.)d(22ln1d2xxxD.xxxdd1答案:C3.下列不定积分中,常用分部积分法计算的是().A.xxc1)dos(2,B.xxxd12C.xxxd2sinD.xxxd12答案:C4.下列定积分计算正确的是().A.2d211xxB.15d161xC.0)d(32xxxD.0dsinxx答案:D5.下列无穷积分中收敛的是().A.1d1xxB.12d1xxC.0dexxD.1dsinxx答案:B(三)解答题1.计算下列不定积分(1)xxxde3答案:cxxe3lne3(2)xxxd)1(2答案:cxxx252352342(3)xxxd242答案:cxx2212(4)xxd211答案:cx21ln215(5)xxxd22答案:cx232)2(31(6)xxxdsin答案:cxcos2(7)xxxd2sin答案:cxxx2sin42cos2(8)xx1)dln(答案:cxxx)1ln()1(2.计算下列定积分(1)xxd121答案:25(2)xxxde2121答案:ee(3)xxxdln113e1答案:2(4)xxxd2cos20答案:21(5)xxxdlne1答案:)1e(412(6)xxxd)e1(40答案:4e55作业三(一)填空题1.设矩阵161223235401A,则A的元素__________________23a.答案:362.设BA,均为3阶矩阵,且3BA,则TAB2=________.答案:723.设BA,均为n阶矩阵,则等式2222)(BABABA成立的充分必要条件是.答案:BAAB4.设BA,均为n阶矩阵,)(BI可逆,则矩阵XBXA的解______________X.答案:ABI1)(5.设矩阵300020001A,则__________1A.答案:31000210001A(二)单项选择题1.以下结论或等式正确的是().A.若BA,均为零矩阵,则有BAB.若ACAB,且OA,则CBC.对角矩阵是对称矩阵D.若OBOA,,则OAB答案C2.设A为43矩阵,B为25矩阵,且乘积矩阵TACB有意义,则TC为()矩阵.A.42B.24C.53D.35答案A3.设BA,均为n阶可逆矩阵,则下列等式成立的是().`A.111)(BABA,B.111)(BABAC.BAABD.BAAB答案C4.下列矩阵可逆的是().A.300320321B.321101101C.0011D.2211答案A75.矩阵444333222A的秩是().A.0B.1C.2D.3答案B三、解答题1.计算(1)01103512=5321(2)001130200000(3)21034521=02.计算723016542132341421231221321解72301654274001277197723016542132341421231221321=1423011121553.设矩阵110211321B110111132,A,求AB。解因为BAAB22122)1()1(01021123211011113232A01101-1-0321110211321B所以002BAAB84.设矩阵01112421A,确定的值,使)(Ar最小。答案:当49时,2)(Ar达到最小值。5.求矩阵32114024713458512352A的秩。答案:2)(Ar。6.求下列矩阵的逆矩阵:(1)111103231A答案9437323111A(2)A=1121243613.答案A-1=2101720317.设矩阵3221,5321BA,求解矩阵方程BXA.答案:X=1101四、证明题1.试证:若21,BB都与A可交换,则21BB,21BB也与A可交换。提示:证明)()(2121BBAABB,2121BABABB2.试证:对于任意方阵A,TAA,AAAATT,是对称矩阵。提示:证明TTT)(AAAA,AAAAAAAATTTTTT)(,)(3.设BA,均为n阶对称矩阵,则AB对称的充分必要条件是:BAAB。提示:充分性:证明ABABT)(9必要性:证明BAAB4.设A为n阶对称矩阵,B为n阶可逆矩阵,且TBB1,证明ABB1是对称矩阵。提示:证明T1)(ABB=ABB1作业(四)(一)填空题1.函数xxxf1)(在区间___________________内是单调减少的.答案:)1,0()0,1(2.函数2)1(3xy的驻点是________,极值点是,它是极值点.答案:1,1xx,小3.设某商品的需求函数为2e10)(ppq,则需求弹性pE.答案:p24.行列式____________111111111D.答案:45.设线性方程组bAX,且010023106111tA,则__________t时,方程组有唯一解.答案:1(二)单项选择题1.下列函数在指定区间(,)上单调增加的是().A.sinxB.exC.x2D.3–x答案:B2.已知需求函数ppq4.02100)(,当10p时,需求弹性为().A.2ln244pB.2ln4C.2ln4-D.2ln24-4p答案:C3.下列积分计算正确的是().A.110d2eexxxB.110d2eexxxC.0dsin11xxx-D.0)d(3112xxx-答案:A4.设线性方程组bXAnm有无穷多解的充分必要条件是().A.mArAr)()(B.nAr)(C.nmD.nArAr)()(10答案:D5.设线性方程组33212321212axxxaxxaxx,则方程组有解的充分必要条件是().A.0321aaaB.0321aaaC.0321aaaD.0321aaa答案:C三、解答题1.求解下列可分离变量的微分方程:(1)yxye答案:cxyee(2)23eddyxxyx答案:cxyxxee32.求解下列一阶线性微分方程:(1)3)1(12xyxy答